366 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, FEBRUARY 1988

Applying Harmonic Balance to
Almost-Periodic Circuits
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Abstract —Harmonic balance is a powerful technique for the simulation
of nonlinear microwave circuits. It solves directly for the steady-state
response of a circuit in the frequency domain, and so is often considerably
more efficient than traditional time-domain methods when circuits exhibit
widely separated time constants and mildly nonlinear behavior. With
harmonic balance the linear component models are evaluated in the
frequency domain, which for distributed devices results in easier model
development and reduced computational complexity.

Harmonic balance has had limited application for simulating circuits,
such as mixers, that have a steady-state response that contains almost-peri-
odic signals. The reason is that to model a nonlinear device, whose
behavior is more conveniently computed in the time domain, harmonic
balance requires the transformation of signals from the frequency domain
into the time domain and vice versa. For circuits that have a periodic
response, the discrete Fourier transform (DFT) is used. Previously, no
satisfactory transform existed for almost-periodic signals. In this article, a
new Fourier transform algorithm for almost-periodic functions (the APFT)
is developed. It is both efficient and accurate. Unlike previous attempts to
solve this problem, the new algorithm does not constrain the input frequen-
cies and uses the theoretical minimum number of time points.

Also presented is a particularly simple derivation of harmonic Newton
(the algorithm that results when Newton’s method is applied to solve the
harmonic balance equations) using the APFT; this derivation uses the
same matrix representation used in the derivation of the APFT. Since the
APFT includes the DFT as a special case, all results are applicable to both
the periodic and almost-periodic forms of harmonic Newton. The simple
derivation of harmonic Newton, combined with the rigorous definition of
terms and the careful exploration of the error mechanisms of the APFT,
makes this article a good base for future research.

NOMENCLATURE

The integer, real, and complex numbers.
Throughout this article, the trigonomet-
ric Fourier series is used rather than the
exponential. Thus, a Fourier coefficient
is described using the coefficients of
sine and cosine. The pair of these two
coefficients are said to reside in C as
opposed to C. C is related to C in that
[a, b}" € C corresponds to a + jbeC.
The I/, norm. For x eRY,
I%]l, = max x| For
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The Euclidean or /, norm. For x €R?,

1xll, = (EX.,x?)'/2. For vectors in R”,

the /, and /_ norms are equivalent.
1

That s, —=={lxll <}l < ] for all
xRN,

Imaginary operator, j=v—1.

The zero vector or matrix and the iden-
tity matrix.

Time, radial frequency.

A fundamental frequency.

An at most countable set of frequencies,
and a finite set with K elements.

The space of all periodic waveforms of
bounded variation with period T.

The space of almost-periodic functions
constructed as a linear combination of
sinusoids at frequencies in the set A.
The set of quasi-periodic functions with
fundamental frequencies A, A,, -+, A,
Equals AP(A) where A is the module
constructed from the basis of funda-
mental frequencies.

Abstract forward and inverse Fourier
operators.

Matrix representation of the forward
and inverse Fourier operators.
Arbitrary waveform and its spectrum.
X=%x.

Laplace transform relation.

Function that maps waveforms to wave-
forms. Sometime f is an arbitrary dif-
ferentiable function; other times it is
used to represent the sum of currents
entering a node or nodes.

Function that maps spectra to spectra.
Related to f in that if y= f(x) then
Y= F(X).

The maximum number of harmonics
considered.

The number of frequencies present in
the spectra.

The number of nodes in a circuit.

The number of time points present in
the sampled waveforms.

Frequency indices. Usually,
k,1€{0,1,---,K—1}.
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m, n Node indices. m,n € {1,2,---, N }.

r,s Time indices. r,s € {1,2,---,S}.

v,V Node voltage waveforms, spectra.

u, U Input current waveforms, spectra.

il Function from voltage to current for
nonlinear resistors, and its frequency-
domain equivalent.

q,0 Function from voltage to charge for
nonlinear capacitors, and its frequency-
domain equivalent.

¥ Matrix-valued impulse response of the
circuit with all nonlinear devices re-
moved.

T Laplace transform of y.

Y Phasor equivalent to T.

Q Matrix used to multiply each particular

frequency component in a vector of
spectra by the correct w, to perform the
frequency-domain equivalent of time
differentiation.

I. INTRODUCTION

UITE OFTEN analog and microwave circuits exhibit

characteristics or behavior that make them difficult
to simulate using traditional time-domain simulation tech-
niques. In particular, it is expensive to find the steady state
for a circuit that exhibits widely separated time constants
because the differential equation solver must continue
until any transient behavior has vanished.

Harmonic balance [1] differs from transient analysis in
that it assumes that the circuit’s steady-state response
consists of a sum of sinusoids, and proceeds to find the
coefficients of the sinusoids that satisfy the differential
equation. Thus, the steady-state solution is calculated di-
rectly and any transient is avoided. Harmonic balance is
efficient if only a few sinusoids are needed to approximate
the solution to the desired accuracy. It is attractive, there-
fore, when the circuit is driven by sinusoidal sources and
when the nonlinearities are driven mildly.

Analog and microwave circuits have other characteris-
tics that are troublesome to time-domain simulators. For
example, they often contain distributed devices. All but the
most idealized distributed device models are difficult to
formulate in the time domain, requiring either a lumped
approximation or the impulse response. Once the model is
formulated, it is usually expensive to evaluate, either be-
cause the lumped approximation is of high order or be-
cause the impulse response must be convolved with the
terminal voltage waveforms.

Another characteristic that is troublesome to time-
domain simulators, and the one that provides the domi-
nant theme of this article, is that many analog and micro-
wave circuits, such as mixers, have inputs at two or more
independent frequencies. These frequencies may be such
that the ratio of the highest to the lowest frequency gener-
ated by the nonlinearities is large. For example, the down-
conversion mixer in the HP8505 network analyzer [2]
supports a maximum input frequency of 1.3 GHz with the

local oscillator frequency always offset from the input by
100 kHz. The ratio of the input to the output frequency
can be as high as 13 000 to 1. Furthermore, the output is
fed directly into a high-Q low-pass filter that has a long
settling time. To simulate this circuit in the time domain
requires a sampling rate well over 1.3 GHz and a simula-
tion interval of at least 100 ps—a minimum of 10° time
points are needed. It is difficult to present meaningful
results in the presence of such a large number of data,
particularly with the vastly different time scales involved.
Normally, this problem is avoided by converting the solu-
tion into the frequency domain, but the many unequally
spaced time points generated by the simulator, along with
the nonperiodic signals make this a difficult task.

Harmonic balance is a promising way to avoid these
problems since it operates in the frequency domain. The
computational complexity depends only on the size of the
circuit and the number of frequencies being used, and not
on the actual frequencies or the time constants present in
the circuit. Furthermore, the solution is obtained in the
frequency domain, so the troublesome conversion needed
by a time-domain simulator to present the results is
avoided. If it is desirable to view the results in the time
domain, conversion from the frequency domain to the time
domain is not difficult.

With harmonic balance, the linear device equations are
evaluated in the frequency domain and the nonlinear de-
vice equations are evaluated in the time domain. When
signals in the circuit are periodic, the discrete Fourier
transform (DFT) provides the needed conversion between
the two domains. To date however, there has been no
satisfactory way to analyze nonlinear circuits such as mixers
that have two or more input signals with arbitrary input
frequency and power, and hence have signals that are
nonperiodic. Signals in the steady-state response of mixers
are made up of several sinusoids at possibly nonharmoni-
cally related frequencies, and so are almost periodic [3].
This article introduces an accurate and efficient algorithm,
the almost-periodic Fourier transform, or APFT, for com-
puting the forward and inverse Fourier transforms of
almost-periodic functions. Unlike previous methods, the
APFT does not constrain the input frequencies and uses
the theoretical minimum number of time points.

Harmonic balance converts a system of nonlinear in-
tegrodifferential equations into a system of nonlinear alge-
braic equations whose solution is the coefficients of the
sinusoids that make up the steady-state response. There
are several ways available to solve the algebraic system [4];
the approach we choose is Newton’s method. We refer to
the combination of harmonic balance and Newton’s
method as the harmonic Newton algorithm. A new and
concise statement of the harmonic Newton algorithm
is given that is valid for both the periodic and almost-
periodic cases.

Section II contains a brief summary of the notation and
defiritions used throughout the article and then formulates
the problem to be solved. Harmonic balance is introduced
in Section II1 as a way of converting a system of integro-



368

differential equations into a larger system of algebraic
equations that is solved for the steady-state solution. Sec-
tion IV introduces the APFT as a generalization of the
DFT and discusses its error mechanisms. In Section V the
new APFT algorithm is presented. Lastly, in Section VI,
the harmonic Newton algorithm is derived using the APFT.
Several methods are given to increase its efficiency, and
the results of applying harmonic Newton to several circuits
with almost-periodic steady-state responses are given.

II. BACKGROUND
A. Overview of Harmonic Balance

When linear circuits are excited by a sinusoid, their
steady-state response, if it exists, is sinusoidal and at the
same frequency as the input. While nonlinear circuits are
capable of a dazzling variety of wonderful and bizarre
behavior, the circuits of interest to designers generally have
a periodic steady-state response to a sinusoidal input; the
period of the response is usually equal to that of the input,
though occasionally it will be some rational multiple.
Because the response is periodic, it is representable as a
Fourier series, that is, as a linear combination of sinusoids
whose periods evenly divide the period of the response. If
the stimulus to the circuit contains two or more sinusoids
that are not harmonically related, the circuit responds in
steady state at the sum and difference frequencies of the
input sinusoids and their harmonics; such a response is
referred to as being almost periodic. Thus, for the circuits
we are interested in, a stimulus constructed as a sum of
sinusoids results in a steady-state response that is also a
sum of sinusoids. The response contains an infinite num-
ber of sinusoids; usually all but a few are negligible.

Harmonic balance differs from traditional transient
analysis in two fundamental ways. These differences allow
harmonic balance to exploit the behavior described above
for circuits in steady state and give the method significant
advantages in terms of accuracy and efficiency. Transient
analysis, which uses standard numeric integration, con-
structs a solution as a collection of time samples with an
implied interpolating function. Typically the interpolating
function is a low-order polynomial. However, polynomials
fit sinusoids poorly, and so many points are needed to
approximate the sinusoidal solutions accurately.

The first difference between harmonic balance and tran-
sient analysis is that harmonic balance uses a linear combi-
nation of sinusoids to build the solution. Thus, it naturally
approximates the periodic and almost-periodic signals
found in a steady-state response. If the steady-state re-
sponse consists of just a few dominant sinusoids, which is
common, then harmonic balance needs only a small data
set to._represent the response accurately. The advantage of
using sinusoids to approximate an almost-periodic steady-
state response becomes particularly important when the
response contains dominant sinusoids at widely separated
frequencies.
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Harmonic balance also differs from traditional time-
domain methods in that time-domain simulators represent
waveforms as a collection of samples whereas harmonic
balance represents them using the coefficients of the
sinusoids. (Just as in traditional time-domain methods,
where it is presumed that a polynomial is used to inter-
polate between samples, we can use samples to represent
the combination of sinusoids, with the understanding that
a sum-of-sinusoids interpolation is to be done between
samples.) Working with the coefficients and exploiting
superposition makes it possible to calculate symbolically
the response from linear dynamic operations such as time
integration, differentiation, convolution, and delay. Be-
cause linear devices respond at the same frequency as the
stimulus, it is only necessary to determine the magnitude
and phase of the response. Using phasor analysis [5], this is
easily done for lumped components such as resistors,
capacitors, and inductors; while it is not trivial for the
more esoteric distributed devices, it is generally much
easier to find their response using phasor analysis than to
try to determine their response to sampled waveforms in
the time domain.

Determining the response of the nonlinear devices is
more difficult. There is no known way to compute the
coefficients of the response directly from the coefficients
of the stimulus for an arbitrary nonlinearity, though it is
possible if the nonlinearity is described by a polynomial or
a power series [6]. We do not wish to restrict ourselves to
these special cases, nor to accept the error of using them to
approximate arbitrary nonlinearities. Instead, we convert
the coefficient representation of the stimulus into a sam-
pled data representation; this is a conversion from the
frequency domain to the time domain and is accomplished
with the inverse Fourier transform. With this representa-
tion the nonlinear devices are easily evaluated. The results
are converted back into coefficient form using the forward
Fourier transform. The computation of these forward and
inverse Fourier transforms when signals are almost peri-
odic is the kernel of this paper.

Because the coefficients of the steady-state response are
an algebraic function of the coefficients of the stimulus,
the dynamic aspect of the problem is eliminated. Thus, the
nonlinear integrodifferential equations that describe a cir-
cuit are converted by harmonic balance into a system of
algebraic nonlinear equations whose solution is the
steady-state response of the circuit. These equations are
solved iteratively using Newton’s method.

B. Definitions

A signal is a function that maps either R (the reals) or Z
(the integers) into R or C (the space of real pairs).! The

! Throughout this article, the trigonometric Fourier series is used rather
than the exponential to avoid problems with complex numbers and
nonanalytic functions when deriving the harmonic Newton algorithm.
Thus, a signal at one frequency in a spectrum is described using the
coefficients of sine and cosine. The pair of these are said to reside in
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domain and range of the map are physical quantities; the
domain is typically time or frequency, and the range is
typically voltage or current. A signal whose domain is time
is called a waveform; one whose domain is frequency is
called a spectrum. All waveforms are assumed R-valued
whereas all spectra are assumed C-valued.

A waveform x is periodic with period T if x(t)=x(t+T)
for all t+. P(T) denotes the set of all periodic functions
with period T that can be uniformly approximated by the
sum of at most a countable number of T-periodic sinusoids.
Thus, P(T) consists of waveforms of the form

0

x(t)= Y (XFcosw,t+ X7 sinw,r) (1)
k=0
where w, =27k /T, X, X{ €R, and
oo
Y [(X,E)2+(Xk5)2] <o0. (2)
k=0

A waveform is almost periodic if it can be uniformly
approximated by the sum of at most a countable number
of sinusoids [7]. We use AP(A) to denote the set of all
almost-periodic waveforms over the set of frequencies A.
Thus, AP(A) consists of waveforms of the form

x(t)= Y (XCcosw,t+ Xsinw,r) (3)
w, €A
where A = {wy, w;,w,, -+ }, and (2) is satisfied. If A is
finite with K elements, it is denoted A 4. If there is a set of
d frequencies {A, A,,---,A,} and A is such that

A={wlw=kA +kA,+ -+ kA,
klvkz’“"kdez} (4)

then A is a module? of dimension d and the frequencies
{AL Ay, -+, A} are referred to as the fundamental frequen-
cies and form a basis (called the fundamental basis) for A.
The sequence of fundamental frequencies { A ;) should be
linearly independent over the rationals (that is £_, A,=0
implies k, =k,=--- =k,=0) so that each we A cor-
responds uniquely to a sequence of harmonic indices { &, }.
If A is a module, then AP(A) is also denoted
AP(A, Ay, -+, Ay). Waveforms belonging to such a set are
referred to as quasi-periodic. Note that P(T)= AP(A)) if
A =2n/T,and P(T)C AP(A, Ay, -+, A) if for some j,
A, =2m/T.

The pair X, = [ XS, X517 € C is the Fourier coefficient of
the Fourier exponent w, and X=[Xy, X}, X,,---]7 is
called the frequency-domain representation, or spectrum,
of x. Conversely, x is the time-domain representation, or

C = R? rather than C. Hence, we are using C rather than C as the scalar
field to construct the vector space for spectra. The correspondence
between C and C is established by the invertible function ¥: € — C that
maps a + jb to [a, b]T.

2In this module, the vectors are real numbers and the scalars are
integers. It is a module because it is closed under vector addition and
scalar multiplication.

waveform, of X. If all the frequencies w;, € A are distinct,
(Le., w; # w, for all i # j) then there exists a linear invert-
ible operator %, referred to as the Fourier transform, that
maps x to X. It is a homeomorphism, which allows us to
talk of x and X as two different representations of the
same signal whenever X = % x.

A collection of devices is called a system if the devices
are arranged to operate on input signals (the stimulus) to
produce output signals (the response). A system is in
steady state if all signals present in the system are almost
periodic and it is in periodic steady state if all signals are
periodic. A system is autonomous if both it and its stimu-
lus are time invariant, otherwise it is forced. An oscillator
is an example of an autonomous system while an amplifier,
a filter, and a mixer are all examples of forced systems.
Lastly, an algebraic or memoryless device or system is one
whose response is only a function of the present value of
its stimulus, not past or future values.

C. Problem Formulation

In the interest of keeping notation simple, we consider
only nonlinear time-invariant circuits consisting of inde-
pendent current sources and voltage-controlled resistors,
capacitors, and distributed devices. These restrictions are
mostly cosmetic; they allow the use of simple nodal analy-
sis to formulate the circuit equations. If a more general
equation formulation method such as modified nodal anal-
ysis is used [8], all results presented in this article can be
applied to circuits containing inductors, voltage sources,
and current-controlled components. We further assume
that the distributed devices are linear, that the circuit is
nonautonomous (or forced), and that it has a steady-state
solution.

Let N be the number of nodes in the circuit, and
assume it has an isolated asymptotically stable almost-
periodic solution v € APM(A); that is, v is a vector of
node voltage waveforms, each of which is almost periodic
on the set of frequencies A. Further assume that the
source current waveforms belong to APV(A), and that all
device constitutive equations are differentiable when writ-
ten as functions of voltage. Now, using Kirchhoff’s current
law, the circuit can be described by

flo.r)=i(o(r))+q(v(1))
+f:my(t_’r)v(7')df+u(1) =0 (5)

where f is the function that maps the node voltage wave-
forms into the sum of the currents entering each node;
r€R is time; 0 €RY is the zero vector; u€ APN(A) is
the vector of source current waveforms; i, g: R” - R" are
differentiable functions representing, respectively, the sum
of the currents entering the nodes from the nonlinear
conductors, and the sum of the charge entering the nodes
from the nonlinear capacitors; and y is the matrix-valued
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impulse response of the circuit with the nonlinear devices
removed.?

III. HARMONIC BALANCE
A. Derivation

When applying harmonic balance to (5), both » and
f(v) are transformed into the frequency domain. Since v is
almost periodic, both i(v) and g(v) are almost periodic;
therefore all three waveforms can be written in terms of
their Fourier coefficients; Fv=V, Fi(v)=ZFi(F V)
=I(V), and Fq(v)=Fq(F WV)=Q(V). Since v, i(v)
and ¢q(v) are vectors of waveforms—one waveform for
each node in the circuit—V, I(V'), and Q(V') are vectors
of spectra. The Fourier coefficients of the convolution
integral are computed by exploiting its linearity. Assume y
satisfies

[~y di <o

and y(¢) =0 for all z <0, that is, assume y is causal and
has finite energy (or equivalently, that the circuit with all
nonlinear devices removed is causal and asymptotically
stable); then

ﬁyty0~rﬁ(ﬂdr=YV
where

Y=[Y,.],
Ymn = [Ymﬂ(k’l)]’

m,ne {1,2,---,N}
k,leZ

where m, n are the node indices; k,/ are the frequency
indices,

Y, (k1)
Re{T,,(jo,)} —Im{T,,(jw,)}

= [, (o)) Re{ Ty o))
0 if k#1

ifk=1

where T is the Laplace transform of y [5], and j=v-1.
Now (5) can be rewritten in the frequency domain as

F(V)=1(V)+Q0(V)+YV+U=0 (6)

where U= % u contains the Fourier coefficients for the
source currents over all nodes and harmonics, and

2=[92,.l. m,ne{1,2,---,N}
Q ={[an(kal)] ifm=n
™o if mn
0 —w, .
Q,,,(k,1)= [“Jk 0 ] if k=1
0 if k+#1.

3To remove a nonlinear device, simply replace its constitutive equation
y=f(x) with y=0.
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(a) (b)

Two different ways of truncating the set of frequencies to be
finite.

Fig. 1.

That F¢4(v) = QQ(V) follows from the differentiation rule
of the Fourier series. Equation (6) is simply the restate-
ment of Kirchhoff’s current law in the frequency domain.

It is important to realize that the frequency-domain
functions for the nonlinear devices (I and Q) are evaluated
by transforming the node voltage spectrum ¥V into the time
domain, calculating the response waveforms i and ¢, and
then transforming these waveforms back into the frequency
domain. To ensure that the nonlinear device response
waveforms are almost periodic, we require that the nonlin-
ear devices be algebraic. If not (that is, if the device has
memory), then the response waveform has a transient
component, is not almost periodic, and cannot be accu-
rately transformed into the frequency domain. The restric-
tion that nonlinear devices be algebraic clearly allows
nonlinear resistors. Fortunately, it also allows nonlinear
capacitors and inductors (actually, any lumped nonlinear
component) because their constitutive relations are alge-
braic when written in terms of the proper variables: v and
q for capacitors, and i and ¢ for inductors [9]. The
conversion between i and ¢ (i=¢) and v and ¢ (v= é) is
done in the frequency domain, where it is an algebraic
operation and does not disturb the steady-state nature of
solution. Nonlinear distributed devices, however, are not
algebraic, and the trick of evaluating their response in the
time domain and transforming it into the frequency do-
main cannot be used. Instead, it is necessary to remain in
the frequency domain and model the nonlinear device
using a Volterra series representation. We will not consider
nonlinear distributed devices further.

B. Truncation and Discretization

To make the process of finding the solution to (6)
computationally tractable, it is necessary to truncate the
frequencies to a finite set. When stimulating a circuit at d
fundamental frequencies, the circuit responds in steady
state at frequencies equal to sums and differences of the
fundamental frequencies and their harmonics. Thus, the
set of response frequencies is a module. We propose two
ways of truncating this set to a finite number of frequen-
cies.

The first approach limits consideration to the first H
harmonics of the fundamental frequencies:

AK(AI’AZf :

k; € Z; |k;| < H for 1< j < d,; first nonzero k; positive}

(7

-,}\d)= {w|w=k1)\1+k2)\2+ etk A
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1
where K = 5((2H+ 1)4+1). The first nonzero k; must be

positive to eliminate frequencies from A that are nega-
tives of each other. When there are two fundamentals
(d = 2), this truncation results in a square grid of frequency
indices as illustrated in Fig. 1(a).

1 cosw;t; sinwl) - COSwx_ 11
1 coswt, Sinwt, --CosSwg_;f,
1 coswt; Sinw ;- COSwg_15
1 coswtg SiNwlg- - COSwWg_ylg

The second method of truncation limits the absolute
sum of the indices k; to be less than or equal to H:

Ag(ApAg - A) =t wlw=kA kA + - + kA,
d
k,€Z; Y |k, <H; first nonzero k; must be positive
j=1

(8)
where K =297 'H%/d!. For d=2, K= H*+ H+1. When
there are two fundamentals, this truncation produces a
diamond grid as shown in Fig. 1(b). Other truncation
schemes are certainly possible. The truncation scheme
directly affects the efficiency and accuracy of the simula-
tion, and should be chosen to fit the particular problem
being solved.

Now that only a finite set of frequencies A, is being
used, the requirement that the fundamental frequencies be
linearly independent over the rationals may be relaxed as
long as each w, € Ay still corresponds uniquely to a valid
sequence of harmonic indices {k;}.

Once A has been truncated to some finite subset A ¢, it
is possible to represent the waveforms as sequences of
finite length. If we assume that w,=0€ Ay, then the
number of samples of each waveform must be S=2K —1
to uniquely fix the Fourier coefficients. This done, the
Fourier transform becomes a finite-dimensional operator
that depends both on A ; and on the S time points used to
sample the waveform. Once the fundamental frequencies
and the truncation scheme are specified, Ay is fixed, but
we are free to choose the time points as we see fit with the
one constraint that # be invertible.

IV. ALMOST-PERIODIC FOURIER TRANSFORM
A. Matrix Formulation

By considering only a finite number of frequencies, it is
possible to sample a waveform at a finite number of time
points and calculate its Fourier coefficients. Since the
spaces involved are now finite dimensional, the first repre-
sentation theorem of linear algebra shows that the Fourier
transform % and its inverse % ! can be viewed as
matrices acting on the vectors of samples and coefficients,

respectively. That is,
Y (XCcoswt + XS sinw,t) = x(r)
we € Ay

can be sampled at S time points, resulting in the set of §
equations and 2K —1 unknowns:

Xy
Sinwg_ 11, X¢ x(1,)
SINWg_ 1, ¥s x(t,)
sinwg gt | | Th (=] x(1y) (9)
. c :
SINwg 1l X’;’l x(tg)
_XK71 =

If the frequencies w, are distinct, and if §=2K —1, this
system is invertible for almost all choices of time points,
and can be compactly written as I' !X = x. Inverting I'™!
gives 'x = X. T and I'"! are a discrete Fourier transform
pair.

Given a finite set A of distinct frequencies w,, and a
set of time points, we say that I and T'"' are one
implementation of the almost-periodic Fourier transform
for AP(Ag). Once T and I'"! are known, performing
either the forward (using T') or inverse (using I'~?!) trans-
form just requires a matrix multiply, or (2K —1)? oper-
ations; this is the same number of operations required by
the DFT.

The DFT is a special case of (9) with w,=kw and
t,=sT/S, i.e.,, when the frequencies are all multiples of a
single fundamental and the time points are chosen equally
spaced within the period. The DFT and its inverse, the
IDFT, have the desirable property of being well condi-
tioned, which is to say that very little error is generated
when transforming between x and X. From the matrix
viewpoint, the high accuracy of the DFT corresponds to
the fact that the rows of T'~! are orthogonal. (We will say
more about this later.) Unfortunately, the DFT and IDFT

are defined only for periodic signals.

For almost-periodic signals, if the time points are not
chosen carefully, T'* can be very ill-conditioned. A par-
ticularly bad strategy for choosing time points when sig-
nals are not periodic seems to be that of making them
equally spaced. Unlike the periodic case, it is in general
impossible to choose a set of time points over which the
sampled sinusoids at frequencies in A ; are orthogonal. In
fact, it is common for evenly sampled sinusoids at two or
more frequencies to be nearly linearly dependent, which
causes the severe ill-conditioning problems encountered in
practice. One contribution of this article is the develop-
ment of an algorithm for choosing time points that gives a
well-conditioned system. We will briefly present previous
work and then present our APFT algorithm.

B. Previous Work

Ushida and Chua [10] use equally spaced time points,
but avoid the ill-conditioning problem by using extra time
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points. In doing so, the matrix T ~! becomes a tall rectan-
gular matrix. To make the system square again, both sides
of (9) are multiplied by (I'"!)7, which results in
(T H'rx=(r4H'x

Thus (9) is converted into a least squares problem that is
solved in the traditional manner using the normal equa-
tion. Unfortunately, the normal equation is notoriously
ill-conditioned and so a new ill-conditioning problem may
be introduced.

Gilmore [1] samples the waveform using several small
sets of equally spaced time points. The DFT is applied to
each set individually. The sets are too small to prevent
aliasing in the computed spectra. The aliasing is eliminated
by taking an appropriate linear combination of the com-
puted spectra. Since the DFT is used, the method is
constrained to periodic signals, though it can be much
more efficient than the standard DFT on sparse spectra.
The total number of time points used is normally greater
than the theoretical minimum by about 50 percent. The
numerical stability of this approach is unknown.

C. Condition Number and Orthonormality

It is now necessary to discuss the conditioning of a
system of equations, a concept alluded to earlier. For-
mally, the condition number of a matrix A4 is defined as
k(A) = ||4]|]]4 Y [12]. The condition number of a matrix
is important because it is a measure of how much errors
can be amplified during the course of solving a matrix
equation. For example, consider solving Ax =5 for x
when both 4 and b are contaminated with error. Write the
contaminated system as

(A+84)(x+8x)=b+db.

If ||84|| and ||8b|| are small, then ||8x|| can be bounded [12]

with

l16x| (||5A|| |I3b|1) .

< x(A)| —— + ——— | + higher order terms.
(Bd] 4l 11l

The problem of ill-conditioning in (9) can be visualized
by considering each equation as defining a hyperplane in
the Euclidean space R2X~1 Let p, € R2X"! be such that
p’ is the sth row in I'"'; then the sth hyperplane is
defined as the set of all points X such that p7X = x(¢,).
Thus, p, is a vector orthogonal to the hyperplane. The
solution to (9) is the intersection of all the hyperplanes. If
the system is degenerate because two or more planes are
coincident, then the intersection is not a single point and
the system of equations has an infinite number of solu-
tions. If there are no coincident hyperplanes, but two or
more of the planes are nearly parallel, then a unique
solution exists; however, high-precision arithmetic is
needed to find it accurately.

A matrix is degenerate if and only if there is a linear
dependence among its row vectors, and it is natural to
suppose that a matrix has a small (good) condition number
if its rows are nearly orthonormal (and thus “far” from
being linearly dependent). We now prove this to be true.

Consider an invertible N X N matrix A. Suppose that
the rows a,, of 4, regarded as vectors, are nearly orthonor-
mal. In particular, suppose that each vector has unit
Euclidean length and that the orthogonal component of
each vector a, with respect to the space S, spanned by the
others is at least a <1 (it would be exactly 1 if the vectors
were precisely orthonormal).

When forming the product 47'4=1, each row of 47!
can be thought of as the coefficients of a linear combina-
tion of the rows of A. This linear combination yields a row
in the identity matrix—a vector of length 1. Suppose that
the nth element in a row of A~! has absolute value
r >1/a. Then the component of the resulting linear com-
bination that is in the direction orthogonal to S, is de-
termined solely by ra,, and will have magnitude greater
than ra>1. Since the linear combination is a vector of
unit length, this is a contradiction. Therefore, no element
of any row of 47! and thus no element of 47! has
absolute value greater than 1/a.

Since 4 € R¥*X7, it follows that |47}, (the /,, norm
of A7) is no more than N/a. And since, by assumption,
the Euclidean norm of the rows of 4 equals one, ||4]j,, < N
(employing the equivalence of the /, and /_ norms in
R”™), and therefore, k(4) < N%/a. In short, the near or-
thonormality of a matrix places an upper bound on its
condition number.

Note that multiplying a matrix by a scalar 8 does not
affect its condition number, since the norms of the matrix
and its inverse are multiplied by, respectively, 8 and 1/8.
Thus, if all rows of a matrix have equal Euclidean length
(not necessarily one) and, when scaled to one, satisfy the
orthonormality property, the matrix is still well condi-
tioned. If the rows of a matrix are nearly orthonormal
after they have been scaled to unit length, we say that they
are (or the original matrix is) nearly orthogonal.

D. Condition Number and Time Point Selection

Given a finite set of frequencies Ag, any set of
S=2K —1 time points yields a I'"! whose row vectors
(consisting of a single 1 and a set of sine—cosine pairs)
have Euclidean norms VK . Thus, if we could find a set of
time points so that these rows were nearly orthogonal, it
would follow from the discussion above that I'"!, and
therefore I', would be well conditioned.

However the relation between the time points and the
orthogonality of the resultant row vectors is clearly rather
involved; finding a set of times which define nearly or-
thogonal row vectors seems to be quite difficult. One
approach is to write down a priori a set of orthogonal
vectors and then look for time points that generate vectors
close to these prespecified ones; this is equivalent to defin-
ing the approximate phases of each sine wave and looking
for a time where every wave is in the appropriate phase.
This in turn can be thought of as a set of approximate
equalities modulo 27, but it is far from clear under what
circumstances a solution exists or how to go about finding
1t.
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Another approach is to choose time points equally spaced
within a time interval larger than the period corresponding
to the smallest nonzero frequency in A . As we discuss
later, however, experience shows that this method of time-
point selection gives the worst results of any method we
tried.

E. Condition Number and Truncation Error

As mentioned previously, the condition number pro-
vides a measure of how much the error is amplified during
a calculation. Roundoff is one source of error in the
transform, but there is another that is normally much
larger—the error due to truncating A to Ay (this error is
referred to as aliasing when using the DFT). The Fourier
coefficients of the frequencies omitted from A are pre-
sumably small but may not be exactly zero, and thus these
frequencies contribute to the vector x of samples; this
contribution is unaccounted for in the calculation of T'~!
and T. Because of this, the computation of X will be in
error.

Fortunately, this error can be bounded. Suppose that the
overlooked sinusoids contribute an error 8x to the ob-
served sample vector x + 8x. From this we calculate the
Fourier coefficients X + 8 X using

X+8X=T(x+8x).

By construction we know that X =Tx. Thus, §X =TIdx,
and ||6X]| < ||T||18x]|. By definition, k=TT Y. It is
easily shown that K <|[T Y|, <V2K, so |IT|, <, /K
and

KOO
18X < 1%l

That is, /K is the upper bound on how much the error
due to coefficients of truncated frequencies is amplified in
the process of transforming a waveform to the frequency
domain. In practice, error amplification factors often ap-
proach this bound, so it is very important to select a set of
time points such that « is small.

V. THE APFT ALGORITHM
A. Time Point Selection

Our time point selection algorithm, referred to as near-
orthogonal selection, was conceived using some of the ideas
discussed above.

First, we thought that if selecting evenly spaced time
points was likely to yield row vectors particularly close to
being linearly dependent, we might be better off selecting
time points randomly from a time interval larger than the
period corresponding to the smallest nonzero frequency in
A «. (We chose an interval equal to three times this period.)
Such a choice is particularly attractive given the complex-
ity of the relationship between the time points and the
orthogonality of the row vectors; making any more intelli-
gent choice of time points seems quite difficult.

Second, we realized that in essence the problem in
recovering X from x is that the linear system may be close
to being underdetermined, in a numerical sense. So adding
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additional equations should increase the accuracy of the
calculation of X. In fact, if more than S time points are
chosen, T~! becomes a tall rectangular matrix, and its
pseudoinverse I' is a wide rectangular matrix satisfying
X=Tx.

Oversampling with twice as many randomly selected
time points as theoretically necessary proves to be success-
ful: it yields a very well conditioned system. However,
when using the transform in the context of harmonic
balance, all the nonlinear devices must be evaluated at
each time point. This is an expensive operation because of
the complexity of the nonlinear device models. Thus, over-
sampling is a costly remedy. It is clear, however, that the
rows of the tall [~! matrix span the space well (in a
numerical sense). Perhaps some carefully chosen subset of
these rows might also suffice.

The near-orthogonal selection algorithm takes just this
approach; from a I'"! whose dimension is M rows by S
columns, where S=2K —1 and M > §, it selects a set of
just S rows, thus requiring no extra time samples. In other
words, from a pool of more row candidates then necessary
(we chose M =28, which seems to give good results in
practice) and their corresponding time points, a “good”
minimal set is selected during the initialization of the
algorithm. When actually performing the transform, only
the minimal set of time points is used. With harmonic
balance, all nonlinear devices are evaluated at each time
point. That only the minimum number of time points is
used, and not 1.5 to 2 times the minimum as required by
the other methods, is one of the significant advantages of
the APFT algorithm.

The near-orthogonal selection algorithm is a variation of
the Gram-Schmidt orthogonalization procedure [13]. Its
input is the matrix formed by randomly choosing twice as
many time points as necessary and forming the corre-
sponding row vectors, p;. Initially, these vectors all have
the same Euclidean length (i.e., /, norm). One of these
vectors, say p,, is chosen arbitrarily. Any component in the
direction of p, is removed from the remaining vectors
using

eip,
Py <P~ 7 P1s
01P1
The vectors that remain are now orthogonal to p;. Since
the vectors initially had the same length, the largest re-
maining vector was originally most orthogonal to p;. It is
chosen to play the role of p, for the next iteration of the
algorithm. This process repeats until the required S vec-
tors have been chosen. The time points that correspond to
these vectors are the time points used to form I'~'. This
algorithm is detailed below.

5=2, - (10)

APFT Near-Orthogonal Selection Algorithm

Given:
A g =(0, 0y, w,, -+, wg_1}, the set of frequencies.
Task:
To find a set of $=2K —1 time points that results in a
well-conditioned T~
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Algorithm:
woin e min({|w,l: 1<k <K}
for (s<1,---, M)
{ random () returns numbers uniformly distributed be-
tween 0 and 1.

random ()

s
min
1)
s . .
[1,co8 wyt,sinwt,, -+ ,co8 wg_ ¢, sinwg_ .17
)
for (r«1,---,8)
{ argmax () returns the index of the largest member of a
set.
k = argmax ({||p”): r<s<M))
swap (p{", p{’)
swap(p{", p{)
swap(?,, t;)
for (se<r+1,---, M)
p§r+l) - p(r) _ o

s (T (n'r

}
Results:
The set {#,: 1< s < S} contains the desired time points.

Once the time points are selected, I' ™! is constructed
with the rows pM for s =1,- -+, S. It is easy to verify that
the time points are well chosen either by calculating the
condition number k=||T||||IT"Y| or by computing the
numerical error € =||T 7! —1J|; both are excellent mea-
sures of the numerical stability of the transform.

B. Constructing the Transform Matrix

There is another problem that up to now we have
ignored. The arguments to the sine and cosine functions
in (9) are potentially very large, which results in excessive
roundoff error. For example, assume A, = 2710° and A, =
27(10° +2). Then w_;, =27v2 and so the time points
fall between 0 and 3/v2 seconds. Thus, w;, can be as
large as 10!, causing two problems. First, on most com-
puter systems, the trigonometry routines are not designed
to handle such large arguments and often return meaning-
less results. This problem is easily avoided by subtracting
from the argument as many multiples of 2« as possible
without making it negative. The second problem is more
troublesome. The approximately 10'° multiples of 27 in
the argument have no effect on the result except to reduce
its accuracy by about 10 digits. Since the w,, product
must be formed (and so truncated to a finite number of
digits by the computer) before the multiples of 27 can be
removed, the digits are lost and cannot be reclaimed.
While this error cannot be eliminated, it can be controlled
by assuming A is a truncated module (note that up to
now we have placed no restrictions on the frequencies in
A x except that they be distinct and that wy = 0). From (4),
the product w7, can be written

d
wity= 3 kA,
j=1
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Let
Aty
\Pjs=fract(—), I<j<diiss<s (1)
27
and
d
¢ =27 Y ks (12)

j=1

Now ¢,,=w,;t,—27m, where m is some integer and
[l < 2w2f=1|kj|. Since the k; are small integers, ¢,, is
an appropriate argument to trigonometry routines on all
computers. Because the product ¢.A; /2 is formed before
the fract operator (which removes any integer portion and
leaves only the fractional part) is applied, it is the domi-
nant source of roundoff error. By using (11) and (12), the
roundoff error can be viewed as resulting from roundoff
error in the A y and ¢,. Since the ¢, are chosen randomly,
their roundoff errors are of no concern.

C. APFT Algorithm Results

The APFT near-orthogonal selection algorithm requires
on the order of M2S operations, where M is the number of
time point candidates used, and S=2K —1, where K is
the number of Fourier coefficients. Since we have used
M =28, the asymptotic complexity of the algorithm is the
same as that of the matrix inversion needed to compute T'.

We note that while the initialization of the APFT (that
is, the time point selection, the formation of '™}, and the
inversion of T~! to find T) requires on the order of S3
operations, the actual forward and inverse transform re-
quires S? operations, the same as the DFT. Thus, the
expensive part of the APFT is performed only once per set
of frequencies; after this initial overhead has been paid,
the APFT is as efficient as the DFT.

To show the numerical stability of our method, we
compare the condition number of I'"! when time points
are 1) evenly spaced, 2) randomly spaced, and 3) de-
termined by the near-orthogonal selection algorithm. The
condition number « is roughly proportional to the errors
in computing the inverse. On our computer, € =10 '%.
Bear in mind that even the DFT, which is theoretically the
best conditioned algorithm for the simpler periodic case,
has a condition number k = N, so the best we can hope for
is linear growth of the condition number with the number
of Fourier coefficients. Observe that, as shown by the
results given in Fig. 2, the condition number from near-
orthogonal selection is experimentally observed to grow
linearly with K. That of random selection appears to grow
quadratically, and that of evenly spaced grows exponen-
tially.

The example chosen for comparison was with two
fundamentals A, =2710° and A,=27(10°+y2). Thus,
the fundamentals differ by only 1 part in 10%; also, be-
cause the fundamentals are incommensurable, the signal is
not periodic. Truncation was performed using (8). Com-
parisons of the condition numbers are shown in Fig. 2 with
the order H varying between 1 and 10. To smooth the
wide variation seen in the results for the case of randomly
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Fig. 2. Condition number of T~! versus order H for the two funda-

mental APFT with truncation performed using (8) and time points
chosen evenly spaced, randomly, and using the near-orthogonal selec-
tion algorithm.

TABLE I
ERROR ESTIMATES AND EXECUTION TiMES FOR THE APFT
ALGORITHM USING DOUBLE PRECISION ARITHMETIC

ON A VAX 8650
APFT Summary

Ay = 10°% %, = 10° + V2, truncation performed using (8)
H K S X € Linit t:rgtom
1 3 5 6 2.8x10°Y7 | 17 ms 0
2 7 13 24 | 83x1077 | 67ms | 0.3 ms
3 13 | 25 64 | 1.1x107'6 | 280 ms | 1.7 ms
4 121 | 41 113 | 1.6x107% | 1.1s 3.6 ms
5 | 31 | 61 | 143 | 1.1x107'% | 335 8.5 ms
6 43 85 270 | 2.3x107¢ 86s 17 ms
7 | 57 | 113 | 420 | 29x10°'¢ | 20s 30 ms
8 | 73 | 145 | 790 | 3.3x10716 41s 49 ms
9 | 91 | 181 | 950 | 4.8x107'¢ | 795 77 ms
10 | 111 | 221 | 1200 | 4.6x107'¢ | 1425 116 ms

H is the number of harmonics of each fundamental. K is the total
number of frequencies, and S is the number of time samples. k is the
condition number of T~! and €=|T "' -1]|. ¢, is the time required
to choose the time points and form and invert T~1. ¢, /.., is the time
required to multiply either T~ ! or T by a vector.

selected time points, each condition number plotted is the
geometric mean of 10 trials. Similarly, because different
intervals give widely varying results for evenly spaced
points, those condition numbers are geometrically aver-
aged over 10 intervals ranging from 1.5 to 4.5 times
27/ w;,- Results obtained from near-orthogonal selection
are so consistent that no averaging was needed, as evi-
denced by the smoothness of that curve. Graphing the
condition number clearly shows that both randomly cho-
sen and equally spaced samples have accuracy problems
when the number of frequencies is large. Near-orthogonal
selection from 2§ randomly selected time points always
results in a reasonable condition number. Table I gives a
summary of information on the APFT with the near-
orthogonal selection algorithm. Execution times were mea-
sured using the C programming language on a VAX 8650
running ULTRIX 2.0.

Recall that coefficients of frequencies not in A can be
amplified by up to /K. For order H =10, this amplifica-
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tion factor equals approximately 10® for evenly spaced
points, 2000 for randomly spaced points, and 10 for points
chosen using near-orthogonal selection. Thus, even if the
coefficients of neglected frequencies are small, for evenly
and randomly spaced points, the error § X due to trunca-
tion may be so large as to dominate over the desired
coefficients X.

VI. HarMONIC NEWTON

A. Derivation

As shown earlier, the circuit equation
f(v,t) =i(o(1))+4(v(1))
+f' y(t=m)o()dt+u(t)=0 (13)
— 00
can be written in the frequency domain as

F(V)=I(V)+QQ0(V)+YV+U=0. (14)

To evaluate the nonlinear devices in (14) it is necessary
to convert the node voltage spectrum V into the waveform
v and evaluate the nonlinear devices in the time domain.
The response is then converted back into the frequency
domain. Now that we have developed the APFT, it can be
used with (14) to allow harmonic balance to be applied to
almost-periodic systems. Assume that v, u € APV(A ;) and
that a set of time points {f,, ¢, -, 1,51} has been
chosen so that I'"! is nonsingular. Then ¥V, =Tu,, I (V)
=i, (v), and Q,(V) =Tq,(v).

Applying Newton-Raphson to solve (14) results in the
iteration

J(V(j))(V(jH) - V(j)) = F(V(J)) (15)
where
OF (V) _aQ(V)
J(V)=—=
W =%w="p %%y 1Y
Or
JdF _(V
JV)=[4,.(V)] = L} mone{1,2,---,N)}
av,
where
= - +Y .
av, av, mtoQv, mn

The derivation of d1,,/dV, follows with help from the
chain rule:
1, (V) =Ti,(v)
a1, (V) di(v) dv,
v,  du, v,

n

Using the fact that IV, =,

ar,(vy i, (v)
=r—=-71!
av, av,
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The derivation of 3Q,,/dV, is identical. Now everything
needed to evaluate (15) is available. If the sequence gener-
ated by (15) converges, its limit point is the desired solu-
tion to (14).

B. Acceleration of Harmonic Newton

Of the time spent performing harmonic Newton, most is
spent constructing and factoring the Jacobian J(V'). There
are two things that can be done to reduce this time. First is
to employ Samanskii’s method [14]; simply reuse the fac-
tored Jacobian from the previous iteration. This eliminates
the construction and LU decomposition of the Jacobian,
and so only the forward and backward substitution steps
are needed. If the circuit is behaving nearly linear, then a
Jacobian may be used many times. If, however, the
Jacobian is varying appreciably at each step, then
Samanskii’s method might take a bad step and slow or
preclude convergence. To decide how many times to use an
old Jacobian, ||F(V)| should be monitored, and a new
Jacobian computed if the norm is not sufficiently reduced
at each step.

The second way to improve the harmonic Newton al-
gorithm is to exploit the sparsity of the Jacobian. The
Jacobian is organized as a block node admittance matrix
that is sparse. Conventional sparse matrix techniques can
be used to exploit its sparsity [15]. Each block is a conver-
sion matrix that is itself a block matrix, consisting of 2 X2
blocks that result from Fourier coefficients being members
of C. Conversion matrices are full if they are associated
with a node that has a nonlinear device attached; other-
wise they are diagonal. In an integrated circuit, nonlinear
devices attach to most nodes, so the conversion matrices
will in general be full. It often happens, though, that
nonlinear devices are either not active or are behaving very
linearly. For example, the base—collector junction of a
bipolar transistor that is in the forward-active region is
reverse biased, and so the junction contributes nothing to
its conversion matrices. If there are no other contributions
to those conversion matrices, they may be ignored. If there
are only contributions from linear components, they are
diagonal. During the decomposition, it is desirable to keep
track of which conversion matrices are full, which are
diagonal, and which are zero, and avoid unnecessary oper-
ations on known zero conversion matrix elements.

Experimentally, the computational complexity of the
LU decomposition of the block Jacobian matrix is
O(N°K?), where typically 1.1 < a <1.5 and K increases as
O(H?), and so the computational complexity of the
harmonic Newton algorithm is O(N*H3¢). The amount of
memory required is O(N°H??). Clearly, the cost of
harmonic Newton increases very rapidly as either H, the
number of harmonics considered, or d, the number of
fundamentals, grows. There are other algorithms, such as
harmonic relaxation [4], that do not suffer from such a
dramatic increase in resource needs, but these methods will
have convergence problems with circuits that behave in a
strongly nonlinear way.

+ Vour -
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Vio+ T—I __I-I— Vio—
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Fig. 3. GaAs double balanced mixer.

Fig. 4. GaAs traveling wave amplifier.

C. Harmonic Newton Results

The APFT algorithm has been integrated into
Harmonica,* our harmonic balance circuit simulator.
Harmonica was then used to simulate two GaAs FET [16]
circuits. The first is the double-balanced mixer shown in
Fig. 3. It is driven with a 50 mV, 5 GHz RF input signal
and a 500 mV, 5.001 GHz LO input signal. The output is
at 1 MHz and passes through a high-Q 1 MHz bandpass
lattice filter. The circuit consists of six GaAs FET’s and 27
nodes and was simulated with order H =5, which corre-
sponds to 31 frequencies. Harmonica required 4.5 mega-
bytes of physical memory, 7.9 megabytes of virtual mem-
ory, and 230 seconds on a VAX 8650 to complete the
simulation. The circuit, with the center frequency of the
output filter adjusted accordingly, was also simulated with
the LO frequency set as close as 1 Hz away from the 5
GHz RF with no apparent change in accuracy. Note that
the combination of the widely separated frequencies and
the high-Q output filter make it prohibitively expensive to
find the steady-state response of this circuit with a time-
domain simulator.

The second circuit is the GaAs FET traveling wave
amplifier shown in Fig. 4 [17], which is being tested for
intermodulation distortion. This circuit is driven by a
two-tone input signal; one tone was 200 mV at 10 GHz
and the other was 200 mV at 10.4 GHz. The response is
shown, both in the time and the frequency domain, in Fig.

4Harmonica, which is a general-purpose circuit simulator, is expected
to be released into the public domain in source code form in early 1988.
It should not be confused with a program of the same name being
advertised by Compact Software.
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TABLE IT

EXECUTION TIMES AND MEMORY REQUIREMENTS FOR Harmonica
RUNNING AN INTERMODULATION
DISTORTION TEST ON THE GaAs TRAVELING
WAVE AMPLIFIER SHOWN IN FIG. 4

GaAs Traveling Wave Amplifier
H | K time physical virtual
memory | memory
Using Ag generated by (7).
1 S | 0.63s | 0.55MB | 0.78 MB
2 |13 | 42s | 0.87 MB 1.5 MB
3 |25 24 s 22 MB 39 MB
4 | 41 98 s 7.5 MB 14 MB
5 | 61 | 320s 7.6 MB 14 MB
Using Agx generated by (8).
1 3 |1]035s | 0.50MB | 0.80 MB
2 7 13s | 0.50MB | 0.80 MB
3 13| 44s | 0.87 MB 15 MB
4 |21 | 156s | 22MB 3.9 MB
5 |31 43 s 23 MB 4.0 MB
6 | 43 | 110s 7.5 MB 14 MB
7 | 57 | 245 7.6 MB 14 MB

I1 is the number of harmonics of cach fundamental and K is the totai
number of frequencies.

5. The circuit was simulated with / =5 using the trunca-
tion scheme given in (7). The computation time and mem-
ory requirements for several values of H and for both
truncation schemes are shown in Table II. There are a few
comments that must be made to clarify some of the results
in the table. The memory allocator expands array sizes in
factors of two, which is why memory requirements some-
times do not change even though H changes. Each dou-
bling of the array size quadruples the amount of memory
required. Most of the approximate factor of two dif-
ferences between physical and virtual memory require-
ments can be eliminated by better implementation. Any

60 80

(b)

GaAs traveling wave amplifier response to two-tone input.

simulation that needed over 64 frequencies required more
memory than the 44 megabytes available from the operat-
ing system.

VIL

A new almost-periodic Fourier transform that is both
efficient and accurate was presented. This transform was
combined with harmenic balance to allow circuits with
widely separated frequencies to be accurately simulated.
Work is continuing on the APFT and its application in
harmonic balance to better understand the algorithm, to
further increase its efficiency, and to explore its error
mechanisms.

CONCLUSIONS
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