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Abstract

This paper presents a new Gaussian quadrature method
for interconnect modeling which applies to one-dimensional
distributions of circuit element values, the line structures
often used to model interconnect wires. The method takes
a line circuit, which may be an arbitrary combination of
lumped and distributed elements, and produces a small
lumped model whose transfer and input characteristics ap-
proximately match those of the original circuit. The same
algorithm may be used to generate lumped models for dis-
tributed elements, or to reduce long chains of lumped el-
ements. The method also applies to one-dimensional dis-
tributions of coupling circuit elements, and, in general, to
any one-dimensional distribution of circuit element quan-
tities. Several examples demonstrate that the quadrature-
based method is capable of automatically generating com-
pact RC, LC and RLC line models with arbitrary accuracy.

1 Introduction

The need for accurate yet efficient interconnect models for
timing and other performance verification has motivated
many modeling techniques. Perhaps the most fruitful ap-
proach taken is matching time moments of the intercon-
nect’s output waveforms, a technique pioneered for circuit
analysis by Elmore [5] and later generalized in different
ways [10, 15, 17, 14]. Several specializations of the gen-
eral moment matching techniques provide efficient methods
for analyzing RC trees, transmission lines and related spe-
cial cases [16, 20, 23, 3], while the newer Krylov methods
offer more robust general algorithms for moment match-
ing [6, 21, 13, 2]. Apart from moment matching, analytical
methods may be applied in certain special cases [19].

This paper presents a new method for interconnect mod-
eling which applies only to one-dimensional distributions of
circuit element values, the structures often used to model in-
terconnect wires. The method takes a line circuit, which may
be an arbitrary combination of lumped and distributed ele-
ments, and produces a small lumped line circuit whose trans-
fer and input characteristics approximately match those of
the original circuit. The same algorithm may be used to gen-
erate lumped models for distributed elements, or to reduce
long chains of lumped ¢lements. The method also applies to
one-dimensional distributions of coupling capacitances and
inductances.

The new method works by preserving the way the el-
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ements are arranged along the original line in the small
lumped model. By matching the moments of the original
circuit-element distribution to the moments of the lumped
model, the algorithm indirectly preserves the response of the
line. The moments that are matched explicitly by the algo-
rithm are the moments of the circuit-element distribution,
or taper, of the line, not the time moments of any response.
Intuitively such an approach works because any voltage or
current along the line sees a similar distribution of circuit el-
ements in either the original line, or the small lumped model.
The matching of the taper’s moments can be done efficiently
using Gaussian quadrature, which also guarantees positive
elements in the final model. Thus the resulting wire models
are always stable, regardless of how they are interconnected.

The new method differs from other lumped-circuit approx-
imation techniques which are typically based on preserving

‘the time response or moments of time responses [24, 8, 1, 12],

or use uniform lumps, or other techniques [9]. One of the
more interesting properties of the new method is its ability to
simultaneously match both transfer and input characteristics
in an easily used circuit model. This allows it to be useful
even for relatively low-loss lines. Also, the method generates
the identical line model for a long line when applied directly
to the long line, or when first applied to sections of the line,
and then to the series composition of the resulting section
models. This composition property ensures that the model
accuracy is not compromised when the method is used to
reduce different pieces of extracted layout as they are gen-
erated, and then applied again to the composition of the
models, as is often convenient in practice.

Section 2 uses the transmission line equations to show how
preserving a line’s taper preserves its electrical behavior, mo-
tivating the development of the Gaussian-quadrature proce-
dure of Section 3 for preserving the taper in the model by
matching element-distribution moments. Section 3.1 devel-
ops the algorithm for the special case of RC lines, but the
results apply directly to any line made up of two kinds of ele-
ments. Section 3.2 shows how matching element-distribution
moments leads to time-moment matching for RC lines, and
Section 3.3 discusses the composition property. The results
in Section 4 are aimed at comparing the new method to
uniform lumping for RC, LC and RLC lines.

2 Transmission Line Equations

A simple transformation of the RLCG transmission line
equations shows why matching a line’s distributed-element
taper preserves the line’s time response. The Laplace trans-
forms of the voltage, V(s,2), and current, I(s, z), for com-
plex frequency s and transmission line position z are related
by the set of ordinary differential equations (see, for exam-

ple, [11])

;;V(s,z) = —[r(z)+ si(z)]I(s,2);
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where 7(2), I(z), g(z) and ¢(z) are the per-unit-length series
resistance, series inductance, shunt conductance and shunt
capacitance, respectively, at 2. The accumulated resistance
along the line at z may be written

#:)= [ et

assuming that z = 0 at one end of the line. In the case where
r(z) is non-gero, the accumulated capacitance along the line
may be written as a function of R since R(z)’s monotonic-
ity implies the existence of the inverse function z(R). In
particular, it is possible to define C(-) as

()

2 R)
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Similarly,

#(R) #(R)
L(R) = / y)dy; G(R) = / o()d.

Using these new definitions and the Chain Rule allows (1)
to be rewritten as

v dL
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These equations indicate that lines with identical dL(R)/dR,
dC(R)/dR and dG(R)/dR values lead to identical solutions
if R is used as the spatial variable. The solutions as func-
tions of distance along the line, V(s,2) and I(s, z), are not
necessarily the same. However, the solutions must match
at the terminals since changing variables between R and z
leaves the endpoint values untouched.

The important special case of RC lines is treated by setting
L = G = 0 in (4), indicating that RC lines with identical
dC(R)/dR values are electrically equivalent [18]. LC lines
are governed by equations of the same form as the RC case,
with L playing the role of R. In general there are several
ways of eliminating the spatial variable z, but all lead to the
conclusion that preserving the taper of the line preserves ter-
minal behavior. These arguments generalize to coupled lines
by replacing the distributed element functions r(z), ¢(z), I(z)
and g(z) with matrices, and the current I and voltage V with
vectors.

3 Matching Two-Element Lines

Equation (4) suggests that the line-circuit reduction problem
may be solved by finding simpler element distribution func-
tions that approximate the original line’s element distribu-
tion functions. This section develops a Gaussian-quadrature
procedure for generating lumped-model approximations for
lines with two kinds of circuit elements by matching mo-
ments of the element distribution functions. Although the
algorithm presentation uses RC lines as a concrete exam-
ple, Section 4 demonstrates that the Gaussian-quadrature
method applies directly to other two-element lines (for ex-
ample LC lines), and may be used repeatedly to generate
models for lines made with more than two elements types
(for example RLC lines).
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3.1 RC Line Matching

As a concrete example, consider the approximation of an RC
line’s capacitance taper, c(R) = dC(R)/dR, with R, equal to
the total resistance of the line. The RC line may be lumped
or distributed, or an arbitrary combination of both. Since
the cumulative capacitance distribution function, C(R), is
always monotonic increasing, finding an approximate taper,
&(R), that preserves the first few moments of ¢(R),

Ry Ry
/ a-(R)R"dR:/ c(R)R*dR, k=0,1...,2m — 1,
0 0
(5)

for some chosen m, is a viable approach. Forcing é(R) to
correspond to a lumped circuit makes it impulsive,

&R) = Z &6(R - R),

1

(6)

where ¢; is the value of the i-th lumped capacitor, positioned
R; away from the reference end of the line. Substituting (6)
into (5) gives

Ry
/ o(R)R*dR =Y &R} k=0,...,2m—1. (7)
0 i

Algorithm 1 (Quadrature for f: w(z)f(z)dz)

Find Orthogonal Polynomials (Gram-Schmidt)
Comment: (f,g) = [° w(z)f(=)g(z)dz.

Initialize po(z) = l,ap_l(z) =0, 'yf = 0.
for i=1toi=m){
Set i1 = (zpi, p:i)/(pi, pi)-
If i > 0, set 93, = (pi, 2:)/(Pi1, pi-1).
Set piy1(z) = (2 — Si+1)pi(2) ~ Viapi-i(z).

Find Weights and Abscissas
Calculate the eigenvalues, A, i =1, ..., m, of the
tridiagonal matrix,
61 T

J=] "

 Ym
Ym 6m.
Set ;=MXi,1=1,...,m.
Calculate the eigenvectors of J, 93,4 =1, ..., m.
Normalize y;, i =1, ..., m, so 37 % = (o, po)-
Set w; = (:[1])?, first entry squared, i=1, ..., m.

Return z; and wi, s =1, ..., m.

In this special case, the moment-matching condition is
efficiently satisfied by approximating the c(R) integral us-
ing Gaussian quadrature (see, for example, [22]). Gaussian
quadrature provides a procedure for approximating integrals
by weighted sums,

/ w(z)f(z)dz =~ Z wif(z:) = / Zw;&(z — z:)f(z)de.
1 1 (8)
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Figure 1: The form of the original (top) and approximate
(bottom) RC line when applying Algorithm 2.

The approximation is exact when f(z) has the form * k=
0, 1,..., 2m ~1 [22]. Thus (7) may be enforced by applying
the Gaussian quadrature rule (8) with w(z) — ¢(R), a — 0,
and b — R:. The weight, w;, is interpreted as the i-th
lumped capacitor value, é;, and the corresponding abscissa,
z;, is the i-th lumped capacitor’s resistive position on the
line, R;. )
{

Algorithm 2 (RC Reduction by quadrature)

Set m to desired number of reduced-line capacitors.
If the original line is an n capacitor lumped line,
choose m < n.

Calculate the Gaussian quadrature approximation,

" (R)F(R)AR = [ YT, &8(R — Ri)f(R)AR,
using Algorithm 1.

Tdentify ¢; as the ¢-th capacitor with position

R; on the reduced line.

Algorithm 1 calculates the approximation (8) by Gaussian
quadrature. Algorithm 2 applies Algorithm 1 to calculate a
reduced lumped RC line model of the form (6) for an original
RC line with taper ¢(R). Under certain regularity conditions
on ¢(R), Algorithm 1 as applied in Algorithm 2 always pro-
duces positive é; values [22]. The orthogonalization prop-
erties of Gaussian quadrature further guarantee that when
the original line in Algorithm 2 is lumped and m = =, the
reduced line is identical to the original line.

Assuming reuse of inner products, the cost of the Gram-
Schmidt part of Algorithm 1 applied to an n capacitor RC
line to calculate an m capacitor reduced RC line requires ap-
proximately 27 flops for each § calculation and 2n more flops
for each pass through the Gram-Schmidt loop for a total of
4mn flops. Since J in Algorithm 2 is symmetric, tridiago-
nal, the weight and abscissa calculation requires about 24m?
flops by the symmetric QR algorithm [4], so the complete Al-
gorithm 1 calculation requires roughly 4mn +24m? flops. In
practice, n > m by a large enough margin so the complete
calculation is O(mn).

3.2 Connections to Time Moments

For the reduction illustrated in Figure 1, the first three mo-
ments matched by Algorithm 2 are

n n
go = Zci; @ =2Rici; q2 =

i=1 i=1

n

2
E R,' Ci.
i=1
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Here R; = ) ;_, r; is the-cumulative resistance up to node
1 starting at the left port in Figure 1, following the notation
of Algorithm 2. The source resistance, r,, is taken as zero
throughout this section for simplicity. These first few taper
moments have physical meaning: go is the total capacitance,
while ¢1 and ¢z are proportional to the total charge and
total energy stored in the steady state when the circuit is
presented with the boundary conditions of a step response
admittance test. The first moments of the voltage response
for the original RC line are [10, 24]

n

miy = zRiCi =q; miy = Z(Rt ~ Ri)ei = Rugo + ¢,

i=1 i=1
while the first moments of the input current response with
the output shorted are

miz = qz/Rf; miy = go —2¢: /R: + qz/Rf.

Here the superscript indicates the driven port number, as
in Figure 1, and the subscript indicates the moment order
and type. Since Algorithm 2 preserves go, g1 and R, it
also preserves these moments, and the corresponding zeroth-
order moments.

3.3 Composition Property

In many interconnect analysis strategies, reduced line pieces
are combined to form longer lines, trees or meshes depend-
ing on the overall topology, and the composed circuits may
be large enough to require additional reduction. The obvi-
ous difficulty with such a nested reduction strategy is that
reduction errors are likely to accumulate.

In the special case of connecting line pieces reduced us-
ing Algorithm 2 in series to form a longer line, and then
reducing the composed line again by Algorithm 2, the re-
sulting line is identical to the one produced by reducing the
longer line directly. This implies that there is no accuracy
penalty for using this method successively in on-the-fly re-
duction. The result can be thought of as a generalization of
the first-moment preserving approach in [24].

Theorem 1 Consider two RC lines, characterized by ¢*(R)
and cB(R) on the intervals [0, R#] and [0, RP] respectively.
If éa(R) and ép(R) are m**-order lines produced by Algo-
rithm 2, then the m™ -order reduction of the composition
of cA(R) and cP(R) produced by Algorithm 2 can be pre-
cisely computed by applying Algorithm 2 to the composition
of éa(R) and ép(R) L

The proof of Theorem 1 is omitted for brevity.

4 Results

Algorithm 2 applies directly to RC line circuits, and may
be used to generate approximate LC line models with in-
ductance replacing resistance. Lines with more than two
element types require repeated application of Algorithm 2
to the different element distributions. RLC lines, for ex-
ample, may be approximated by first using Algorithm 2 to
obtain lumped models for I{ R) and c(R) separately, and then
merging the two on a single set of resistors.
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Figure 2: The original and approximate tapers generated by
Algorithm 2 for the uniform lumped RC test line.

Figure 3: The percentage delay error for the approximate

lines of Figure 2 (left) and for uniform-lump approximations
with the same number of capacitors, m (right).

4.1 RC Lines

Figure 2 illustrates the C(R) function for the original uni-
form lumped line of the form pictured in Figure 1, together
with the approximate tapers produced using Algorithm 2
for various numbers of capacitors, m. The original line has
ri = 1500/101€2, c; = 1700/100£F and n = 100.

Applying a unit voltage step to both the original and ap-
proximate lines as illustrated in Figure 1, with », = 15082,
produces output voltage delay and input source current dif-
ferences pictured in Figures 3 and 4 respectively. For a given
number of capacitors, the superiority of Algorithm 2 over
uniform lumped models is evident.

Figure 5 illustrates the taper of a second RC line exam-
ple with random resistances uniformly distributed between
1.485140 and 2.22772Q2, and random capacitances uniformly
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Figure 4: The voltage source current error for the approxi-
mate lines of Figure 2 (left) and for uniform-lump approxi-
mations with the same number of capacitors, m (right).
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Figure 5: The original and approximate tapers for the ran-
dom lumped RC test line.
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Figure 6: The percentage delay error for the approximate
lines of Figure 5 (left) and for uniform-lump approximations
with the same number of capacitors, m (right).

distributed between 1.7fF and 25.5fF arranged in the topol-
ogy of Figure 1 with n = 100. Also ten randomly chosen
resistors are set to 50 in an attempt to model vias, and
ten randomly chosen capacitors are set to H0fF to repre-
sent load capacitances. Applying Algorithm 2 to the ran-
dom line gives the element tapers in Figure 5. The uniform
lumped lines used for comparison have element values cal-
culated from R; = 1070.87Q2 and C; = 1.68132pF.

Applying a unit voltage step to both the original and ap-
proximate lines as illustrated in Figure 1, with r, = 1509,
produces ocutput voltage delay and input source current dif-
ferences pictured in Figures 6 and 7 respectively. Algo-
rithm 2 retains its superior delay and input impedance prop-
erties for the more realistic random line test case.

&
P
!
AR
L8

&

TvimmnTam, WRtones
F
[Ty ——
b

W

u
. &

Te s °F G+ es 08 11z 14 1A &
Time, Henceede

% ea 1 i3 1x
Tine,Nisncascords

Figure 7: The voltage source current error for the approxi-
mate lines of Figure 5 (left) and for uniform-lump approxi-
mations with the same number of capacitors, m (right).
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Figure 8: The magnitude of the transmission scattering
parameter, s12, for the example LC line approximated by
Gaussian quadrature (right) and uniform lumping (left).
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Figure 9: The magnitude of the reflections scattering param-
eter, 811, for the example LC line approximated by Gaussian
quadrature (right) and uniform lumping (left).

4.2 LC Lines

Algorithm 2 applies directly fo lumped LC line reduction if
the resistances are replaced with inductances. Then ¢(L) re-
places ¢(R), and ¢(L) need not be lumped as implied in the
statement of Algorithm 2. In particular, an ideal delay line
with total inductance L: and total capacitance C; may be
approximated by setting ¢(L) = C;/L; and applying Gaus-
sian quadrature as in Algorithm 2. The resulting lumped
elements are scaled versions of the tapers in Figure 2, the
only difference being due to the lumped nature of the origi-
nal line taper in Figure 2.

Figures 8 and 9 illusirate the magnitudes of the scat-
tering parameters for such an approximation of a uniform,
distributed, 50mm, 300ps delay, LC line with zo = 50(,
C; = 6.67pF and L = 16.6TnH. Driving either end of the
line through a 502 termination, and shorting the other end
with a 50§1 resistor gives the illustrated scattering parame-
ters. The original line’s characteristics of 811 = 0, 512 = 1
and linear phase are not plotted in the figures.

In general the Gaussian quadrature approximation trades
off usable bandwidth for diminished reflections. This is evi-
dent, for example, when comparing the lumped and quadra-
ture approximations in Figure 8. The frequency where the
uniform lumped model becomes an open circuit for m = 10
is around 10GHz, while for the quadrature model it is only
7GHz. On the other hand, the lumped model s12 indicates
significant attenuation around 3GHz, while the quadrature
model remaing useful to 6GHz. Thus the quadrature model
may be used when the driving signals have most of their en-
ergy below a certain frequency, and this frequency is higher
than for the uniform model with the same number of lumps.
The plots also show that the quadrature models eventually
end up having significant ripples before the band edge as
m is increased. The ripples are not eliminated, but rather
postponed. Phase plots are not included due to space restric-
tions, but the phase characteristics exhibit the same band-
width trade-off as the magnitudes.
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Figure 10: The magnitude of the transmission scattering
parameter, 512, for the example RLC line approximated by
Gaussian quadrature (right) and uniform lumping (left).
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Figure 11: The magnitude of the reflections scattering pa-
rameter, sl1, for the example RLC line approximated by
Gaussian quadrature (right) and uniform lumping (left).

4.3 RLC Lines

Applying Algorithm 2 first with ¢(R), and then replacing
¢(R) by I(R) and using Algorithm 2 again, gives a capac-
itance and inductance taper on a common resistive spine.
Merging the two so that the inductors and capacitors see the
same resistances as they would separately gives an method
for approximating RLC lines.

Figures 10 and 11 give the scattering parameter data for
models of a uniform RLC line identical to the LC line of the
previous section, but with a uniform distributed resistance
of R, = 101, instead of zero. The same trade off between
bandwidth and fidelity is-evident in this low-loss example,
and the match to the original data is poorer. The original
line data in these plots was calculated from a uniform one-
hundred-lump approximation.

5 Conclusions and Future Work

The recasting of the line-matching problem into one of
matching element-distribution function moments sheds a dif-
ferent light on earlier work motivated by matching time mo-
ments. For the RC line case Algorithm 2 is most similar
to the many methods for preserving Elmore delay during
circuit-to-circuit reduction described in [24] and its refer-
ences. Applying those methods to RC lines typically pre-
serves total resistance and capacitance together with Elmore
delay, which amounts to preserving the first few spatial mo-
ments of the RC line taper. More recent work in this area
also preserves moments computed at infinite frequency [1, 7].
For an RC line the grounded capacitors become shorts in the
infinite frequency limit, so this kind of technique preserves
the resistances near the terminals, as does Algorithm 2. The
older techniques have the advantage of applying to more
general RC circuits than Algorithm 2, but Algorithm 2 has
unique convergence and composability properties.

Despite previous methods’ applicability to more general
RC circuits than just RC lines, their ties to time moments
make it difficult to find generalizations to circuits with other
kinds of circuit elements. In contrast, Algorithm 2 applies



directly to LC and RLC circuits since it matches element dis-
tribution functions, not time waveforms. By repeated appli-
cation of Algorithm 2 to the individual element distribution
functions of a line relative to a chosen index distribution, it
is possible to construct lumped models for any lumped or
distributed line circuit construcied with any kind of element
type. The element types need not be just inductance, capac-
itance and resistance, but could be ideal delays, skin-effect
elements, or any other type of element.

More work is needed to determine if models constructed
this way are useful. The results of this paper, for example,
indicate that the method works better for RC and LC lines
than for low-loss RLC lines. At this writing it is not clear
why the no-loss LC models perform better than the RLC
models, given the good performance of the maximum-loss
RC models. It is also not clear how well coupled models
generated by applying Algorithm 2 to coupling distributions
would perform.

The authors would like to acknowledge helpful conversa-
tions with Ricardo Telichevesky, Xiaojun Zhu and Steve Mc-
Cormick.
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