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Simulation of Nonlinear Circuits in the Frequency
Domain

KENNETH S. KUNDERT, STUDENT MEMBER, IEEE,
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Abstract—Simulation in the frequency domain avoids many of the
severe problems experienced when trying to use traditional time-do-
main simulators such as SPICE to find the steady-state behavior of
analog and microwave circuits. In particular, frequency-domain sim-
ulation eliminates problems from distributed components and high-Q
circuits by foregoing a nonlinear differential equation representation
of the circuit in favor of a complex algebraic representation.

This paper reviews the method of harmonic balance as a general
approach to converting a set of differential equations into a nonlinear
algebraic system of equations that can be solved for the periodic steady-
state solution of the original differential equations. Three different
techniques are applied to solve the algebraic system of equations: op-
timization, relaxation, and Newton’s method. The implementation of
the algorithm resulting from the combination of Newton’s method with
harmonic balance is described. Several new ways of exploiting both the
structure of the formulation and the characteristics of the circuits that
would typically be seen by this type of simulator are presented. These
techniques dramatically reduce the time required for a simulation, and
allow harmonic balance to be applied to much larger circuits than were
previously attempted, making it suitable for use on meonolithic micro-
wave integrated circuits (MMIC’s).

NOMENCLATURE

z, R, G The integer, real, and complex numbers.
J Imaginary operator, j = v —1.

t, w Time, radial frequency.

Ty, wy  Period and fundamental frequency of a peri-
odic waveform. Ty = 27/w,.

P(T) The set of all periodic waveforms of bounded
variation with period 7.

¥, F~! Forward and inverse Fourier operators.

x, X Arbitrary waveform and its spectrum.
X = Fx.

© Laplace transform relation.

f Function that maps waveforms to wave-
forms. Sometimes f is an arbitrary differ-
entiable function, other times it is used to
represent the sum of currents entering a
node or nodes.

F Function that maps spectra to spectra. Re-
lated to fin that if y = f(x) then Y = F(X).

H Total number of harmonics being calculated.

N Total number of nodes in a circuit.
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Harmonic indices.
k,le{0,1,---,H — 1}.

Node indices. m,ne {1,2, - - - , N}.

Node voltage waveforms, spectra.

Input current waveforms, spectra.

Function from voltage to current for nonlin-
ear resistors and its frequency-domain
equivalent.

Function from voltage to charge for nonlin-
ear capacitors and its frequency-domain
equivalent.

Matrix-valued impulse response of the circuit
with all nonlinear devices removed.

Laplace transform of y.

Phasor equivalent to T.

Matrix used to multiply each particular fre-
quency component in a vector of spectra
by the right kw to perform the frequency-
domain equivalent of time differentiation
(jQX = F(dx/dt)) just as in the scalar case
where (jwoX = F(dx/dy)).

A closed ball centered at x with radius 6.
Byx) = {y: llx — »ll = 8}.

O~ =

B;(x)

1. INTRODUCTION

T IS COMMON for analog and microwave circuits to

be pseudo-linear in nature. By this it is meant that input
signals are sinusoidal and small enough so that few har-
monics are produced. This does not imply that the non-
linearities in the circuit can be neglected. Indeed, mixers
and oscillators fit this description and yet they fundamen-
tally depend on nonlinear effects to operate. It is also
common for these circuits to have a large number of dis-
tributed components such as transmission lines, whose
models often include loss, dispersion, and coupling ef-
fects. These distributed components are very difficult and
often impractical to simulate in the time domain because
they are described using partial differential equations.
While it is possible to approximate the distributed com-
ponents with collections of lumped components, these ap-
proximations usually need to be of very high order to
achieve sufficient accuracy, so they require a large num-
ber of lumped components. In addition, time-domain sim-
ulators are not able to exploit the pseudo-linear nature of
these circuits, and often require an excessive amount of
time because the steady-state solution is desired. Using a
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traditional time-domain simulator to find the steady-state
solution requires that the circuit be simulated until the
transient solution vanishes, resulting in a very expensive
simulation when the circuit is high-Q or narrow band.

Simulating these circuits in the frequency domain
avoids these problems and eases the problem of formu-
lating the equations for distributed components by trans-
forming the time-domain differential equations into alge-
braic complex equations. Signals are represented using
their Fourier series rather than as functions of time, so
only periodic signals are representable and transients are
naturally avoided. Also, the pseudo-linear nature of these
circuits is naturally exploited since the amount of time
required for a frequency-domain simulation is propor-
tional to the number of frequencies present. Lastly, it is
usually possible to find closed-form algebraic descriptions
for distributed components in the frequency domain, so
simulating these components is inexpensive.

Several other methods, all based in the time domain,
have been proposed to find the steady-state solution [1]-
[3]. The most popular is the shooting method. It itera-
tively simulates the circuit over one period intervals. On
each iteration, the initial condition is varied, attempting
to make the signals at the end of the period exactly match
those at the beginning. The shooting method works best
on forced systems that are not strongly nonlinear and have
periodic solutions. They will handle autonomous circuits
and forced circuits with almost-periodic solutions with
some difficulty. They do not, however, handle distributed
components any better than standard time-domain meth-
ods.

This paper reviews traditional approaches to finding the
periodic steady-state solution for nonlinear circuits in the
frequency domain and then describes several new tech-
niques that dramatically accelerate the analysis. These
techniques allow much larger circuits to be simulated.
They also allow circuits to be simulated at a greater num-
ber of harmonics, which results in a substantial increase
in accuracy.

After this introduction, Section I continues with a brief
summary of the notations and definitions used throughout
the paper. The method of harmonic balance is introduced
in Section II as a way of converting a differential equation
into a system of algebraic equations that can be solved for
the periodic solution of the differential equation. The er-
ror mechanisms present with harmonic balance are briefly
explored, and then several ways of solving the nonlinear
system of equations generated by harmonic balance are
studied. In particular, the harmonic programming, har-
monic relaxation, and harmonic Newton methods are pre-
sented. The traditional form of harmonic relaxation is
shown to be not always locally convergent, but a new
modification is given and shown to provide this desirable
property. A new derivation of harmonic Newton is given
that does not require the presence of both positive and
negative frequencies, which reduces computational com-
plexity and memory requirements by a factor of two over
previous derivations.
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In Section 111, several ways of increasing the efficiency
of harmonic Newton are presented. The structure of the
Jacobian is explored in some detail and new ways to ex-
ploit that structure are given. Finally, results are pre-
sented for several circuits, with emphasis on the time re-
quired to find the solution and the accuracy of the solution.
It is shown that harmonic Newton can be both accurate
and efficient.

A. Notation

When working with signals and functions, the follow-
ing notation will be used: lower-case letters are used to
denote time-domain variables and functions, and upper-
case letters are used for frequency-domain variables and
functions. Superscripts in parentheses represent iteration
counts, and subscripts are used for node numbers. If the
subscript is missing, then the variable is a vector repre-
senting all nodes. The argument of a waveform is time
and for a spectrum it is the harmonic number. If the ar-
gument is missing, then the variable represents the whole
signal (over all time or all harmonics). The superscripts
R and I refer to either the real or imaginary part of the
variable. A bar over a variable or function implies that it
is equivalent to the unbarred version except that rather
than being valid over the field of complex numbers, it is
valid on R?. Thus

v =y the jth iteration of the volt-

age vector containing the

complete voltage spectrum
for each node;
the voltage spectrum for node

n;
the vector of node voltage

phasors for the kth har-

monic; ‘
the phasor for the kth har-
monic of the voltage at

node n;
the real and imaginary parts

of V,(k);

V.k) = [VR(k) Vik)}T The R* equivalent of V,(k).

Ve = Va(*)

Vik) = V.(k)

Vau(k)

VE®K), Vik)

Similar notation is used for matrices, except the appro-
priate subscripts, superscripts, and arguments are dou-
bled. For example

Je (V) the complete harmonic Jacobian of F at
v,

the partial derivative of all harmonics
of the current at node m with respect
to all harmonics of the voltage at
node n. Jg (V) is called a fre-
quency conversion matrix [4];

the partial derivative of the kth har-
monic of the current at all nodes with
respect to the /th harmonic of all node

voltages;

JF, mn(V)

Jr(V, k, 1)
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Jr,mn(V, k, 1) the partial derivative of the kth har-
monic of the current at node m with
respect to the I/th harmonic of the
voltage at node n;

Iz mn(V, k, 1) the R? version of Jp, ., (V, k, 1);

Tz.mV, ks 1)
B [J‘,?{*m,,(v, kD) JE Vs k, 1)]
TRV b, 1) TRV, K, D

B. Definitions

Let a signal be a function that maps either R (the reals)
or Z (the integers) into R" or C". The domain and range
of the map are physical quantities, the domain typically
being time or frequency, and the range typically being
voltage or current. A signal whose domain is time is called
a waveform, and whose domain is frequency is called a
spectrum. All waveforms are assumed to be real valued,
whereas all spectra are assumed complex valued. A wave-
form fis periodic with period T, if f(t) = f(t + T,) for
all ¢t. P(Ty) denotes the set of all periodic functions of
bounded variation with period Ty, i.e., f € P(T,) implies
f: R = Ris Ty-periodic, bounded, piecewise continuous,
and has at most a finite number of minima, maxima, and
discontinuities per period. Functions of this type are said
to satisfy the Dirichlet-Jordan criterion and can be written
as a Fourier series

27

x(0) = . 2. X(k) &*¢, where X(k) € C, wy = e
o )

1 ("
Xk) = — S x(t) e g,

T() 0
The kth harmonic of x(t) is the frequency kwy and X(k) is
its Fourier coefficient or phasor. X = {- - - , X(—1), X(0),
X(1), -+ -} is called the frequency-domain representa-
tion, or the spectrum, of x. Conversely, x is called the
time-domain representation, or the waveform, of X.

A collection of devices is called a system if the devices
are arranged to operate on an input signal (the stimulus)
to produce and output signal (the response). A system is
said to be in periodic steady state if all signals present in
the system are periodic. A system is autonomous if both
it and its stimulus are not time-varying, otherwise it is
forced. An oscillator is an example of an autonomous sys-
tem while an amplifier, a filter, and a mixer are all ex-
amples of forced systems. Lastly, an algebraic or mem-
oryless device or system is one whose response is only a
function of the present value of its stimulus, not past or
future values.

II. HARMONIC BALANCE

Harmonic balance [5], [6] (a special case of Galerkin’s
procedure [7], [8]) can be seen as the extension of phasor
analysis [9] from linear to nonlinear differential equa-
tions. Recall that in phasor analysis the steady-state so-
lution to an ordinary linear differential equation whose
stimulus is sinusoidal is found by assuming the solution

has the form x(f) = Re (Xe/“), substituting it into the
differential equation, evaluating the derivatives, and solv-
ing the resulting algebraic equation for X. When the dif-
ferential equation is not linear, the solution is rarely a
simple harmonic function of time but can often be ap-
proximated to first order by such a function. With har-
monic balance, an approximate solution is found by as-
suming the solution to be purely sinusoidal and choosing
its magnitude and phase to satisfy the differential equation
at the fundamental only. Thus, the approximate solution
x(f) = Re (Xe/“?) is substituted into the differential equa-
tion, all frequency components generated other than the
fundamental are ignored, and the resulting algebraic
equation is solved for X.

It was recognized that the assumed solution when using
harmonic balance need not be purely sinusoidal, but rather
could consist of a linear combination of sinusoids. We
shall assume those sinusoids are harmonically related,
making the solution periodic. If the differential equation
was such that, once the solution was substituted in, the
resulting equation can be factored into a sum of purely
sinusoidal terms, then superposition (due to the linearity
of addition) and the orthogonality of sinusoids at different
harmonics can be exploited to break the resulting alge-
braic equation up into a collection of simpler equations,
one for each harmonic. The equations are solved by find-
ing the coefficients of the sinusoids in the assumed solu-
tion that result in the balancing of the algebraic equation
at each harmonic. Hence, the name harmonic balance.

The application of harmonic balance can now be stated
as a simple procedure, usually referred to as the method
of harmonic balance.

The Method of Harmonic Balance

Given: A differential equation of the form'
fCe, x,u) =0 (1)
where u € P(Ty) is the stimulus waveform, x
is the unknown waveform to be found and fis
continuous and real.
Step 0:  Assume that the solution x exists, is real, and
belongs to P(Ty). Then
< . 2
x() = 22 Xk) e where w, = =iy
k= —oo TO
Step 1: Substitute the assumed solution and its deriv-

ative into f. Note that x € P(T) implies x €
P(Ty), and since u € P(Ty) as well, f(x, x, u)
€ P(T,). Write the resulting equation as Fou-
rier series:

fx@), x(@), u@t)) = k:E_m FX, U, k) ejkwo(tz)

'The form of the differential equation in (1) was chosen for notational
convenience; harmonic balance is not limited to this form alone.
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where
X=1[--,X(—=1,X0), X1), --- 17
U=[---,U~1, U0, U1, ---17
ut) = k_Z Uk e’
Step 2:  Solve the system of nonlinear algebraic equa-
tions
FX,U k)=0 forall keZz 3)
for X.

The statement that (3) is satisfied if and only if (1) is
satisfied is called the principle of harmonic balance. 1t
can easily be proved by applying Parseval’s theorem to
2).

As an example of how harmonic balance can be used to
find the solution to a nonlinear differential equation, con-
sider Duffing’s equation, which can be used to describe a
nonlinear LC circuit

4+ Nx + = A, cos (w). @)

The “‘amount of nonlinearity’’ in the equation is con-
trolled by u, and N is the resonant frequency of the circuit
when p = 0. The steady-state solution to this equation
has the form

o
x = kZ a;. cos (kwyt),
=0

where gy = O fork =0,2,4, -+ -,

To make the problem tractable, only a, and a; will be
assumed to be nonzero. We can now substitute our as-
sumed solution £(f) = a; cos (wyt) + a; cos (3wy?) into
(4) as follows:

%p.ag cos (9wgt) + 3uaai cos (Twol)
+ 3u@la; + a,dd) cos (Swy)
+ [iu(3a§ + 6a%a3 + a) + (N2 — 9w(2))a3] cos (Bwp?)

+ [}1;1.(3(1%13 + 6a,a3 + 3ad) + (\? — wi)ai]

€08 (wgt) = A; cos (wyl). 5)

We can now use the fact that sinusoids at different har-
monics are orthogonal to rewrite (5) as a system of five
equations, one for each harmonic generated by the as-
sumed solution

cos (wof):  1u(3ala; + 6a,ds + 3a))
+ N — Wa, = 4, (6a)
cos Buwpt): IuBa3 + 6ala; + @) + (\* — 9wd)a; = 0

(6b)
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cos (Swyl): 3p(aia; + a;a3) = 0 (6¢)
cos (Twot): 2uaas = 0 (6d)
cos (wgl): tpay = 0. (6€)

Since there are only two unknowns, it is not possible to
exactly satisfy all five equations. This problem results
from including only a finite number of harmonics in the
assumed solution when really an infinite number exist.
Traditionally, the coefficients of the sinusoids in the so-
lution are computed by solving the equations at the har-
monics present in the solution. Thus, a, and a; are found
by simultaneously solving (6a) and (6b). In effect, the ex-
act solution is found for (4) with a perturbed right-hand
side

£ 4+ W%+ puf = A, cos (wof) + As cos (Swf)
+ Ay cos (Twgt) + Ag cos Qwgt) (7)

where
As = _%ﬂ(a%% + a,a3)
A; = _%Iv‘ala§
Ay = —%uag.

Notice that no mention has been made about how to
solve the system of algebraic equations generated in the
last step of the method of harmonic balance. Several dif-
ferent approaches have been used, the most notable being
optimization [10]-[12], nonlinear relaxation [13], and
Newton’s method [14], [15]. All these methods have quite
different characteristics, but all have been referred to only
as harmonic balance, which has led to a certain amount
of confusion. To eliminate any confusion, at least in this
paper, the three approaches will be called harmonic pro-
gramming, harmonic relaxation, and harmonic Newton.

A. Error Mechanisms

There are two sources of error that are of interest in
harmonic balance. The first results from truncating the
harmonics considered to some finite number, and the sec-
ond results from not completely converging the iteration
used to solve the nonlinear system of algebraic equations.
If Newton’s method is used, then the second source of
error can be driven to an arbitrarily small level in rela-
tively few iterations because of the method’s quadratic
convergence property. So this source of error will be ig-
nored.

As shown in (7), harmonics that are not in the assumed
solution end up perturbing the right-hand side of the al-
gebraic equations. Recall that (6a) and (6b) were solved
exactly for a, and a3, and (6¢), (6d), and (6e) were left
unsatisfied; thus, (4) was also unsatisfied. Let ¢ be the
amount by which (4) is not satisfied.
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e®, ) = % + N% + pi® — A cos (wof)
where
() = @, cos (wof) + dz cos (Buwyl).
From (7), it is clear that
€(£, 1) = As cos (Swgt) + A; cos (Twgt) + Ag cos Ywgh).

Note that e is orthogonal to the form of the assumed so-
lution o cos (wgf) + a3 cos (3wgt). This is a general prop-
erty of harmonic balance when only a finite number of
harmonics are considered.

An iterative method is used to solve the nonlinear al-
gebraic system of equations generated by harmonic bal-
ance. Equation (6) is an example of such a system; it can
be represented as

FX) =0

where F.®*> = B® and X = [4, 4,]7. In practice, this
sytem is evaluated at X = [o; 3] ” by computing x(z) =
ay cos (wof) + as cos (Bwot) at several time points ¢;, t,
< -« t,, evaluating f(f) = X + Nx + ux3 — A, cos (wol)
at these time points, and converting f(¢) into the fre-
quency domain using the discrete Fourier transform
(DFT). In this example, f(¢) is band limited, so its Fou-
rier coefficients can be calculated exactly. Only the coef-
ficients of the first two harmonics of f are of interest; the
remaining ones are discarded. However, since there are
nine harmonics present, the Nyquist sampling theorem
states that f must be evaluated at more than 18 time points
to determine accurately the coefficients for the first two
harmonics. Originally, when it was decided to compute
only two harmonics, it was assumed that the coeflicients
at the remaining harmonics were small. So for efficiency,
when calculating the Fourier series of f, the remaining
harmonics are assumed to be negligible, and fis evaluated
at only enough points to calculate the coefficients of the
first two harmonics. Since the remaining harmonics are
not zero, they will alias down onto the two, resulting in
further error.

B. Circuit Analysis Using Harmonic Balance

Our goal is, given some nonautonomous, nonlinear
electrical system, and some periodic stimulus, find the pe-
riodic steady-state response numerically. Note that mix-
ers and oscillators are being specifically excluded from
consideration. To simplify the presentation, the circuit
equations will be formulated using nodal analysis. The
node voltages are assumed to be periodic and represented
as spectra with the phasors for each harmonic of each node
voltage being the unknowns. When using nodal analysis,
the principle of harmonic balance simply becomes a re-
statement of Kirchhoff’s current law in the frequency do-
main.

Nodal analysis allows each device in the circuit to be
evaluated individually, with the current resulting from
each device simply added to the appropriate node. The
node voltages and the sums of the currents into each node
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are represented in the frequency domain, which makes
evaluation of the linear devices particularly easy. Phasor
analysis can be used by exploiting superposition and ana-
lyzing a linear device at each frequency individually.
Nonlinear devices present a problem though because it is
difficult to explicitly formulate the response of a nonlinear
device from a stimulus represented in the frequency do-
main. This problem is circumvented by transforming the
stimulus of each nonlinear device into a time-domain
waveform, calculating the resulting response waveform,
and transforming the response back into the frequency do-
main. This brief excursion into the time domain will be
hidden from the rest of the circuit if the response wave-
form is periodic, which can be assured if the nonlinear
device is represented by an algebraic equation because the
stimulus is periodic. If the nonlinear device is not repre-
sented by an algebraic equation (i.e., the device has mem-
ory), then the response waveform will have a transient
component; thus, it will not be periodic and so cannot be
accurately transformed back into the frequency domain.
To prevent this, all nonlinear devices in the circuit will
be assumed to be represented by algebraic equations. This
restriction certainly allows resistors to be nonlinear. Sur-
prisingly, it also allows capacitors and inductors to be
nonlinear because their constitutive relations are algebraic
when written in terms of the proper variables; v and g for
capacitors, and i and ¢ for inductors. The conversion be-
tween i and ¢, and v and ¢, must be performed in the
frequency domain, where it is an algebraic operation and
does not disturb the steady-state nature of the solution.
Nonlinear distributed devices, such as nonlinear trans-
mission lines, cannot be salvaged, however, so they are
specifically excluded.

To show how harmonic balance would be applied to
circuit analysis, consider a circuit consisting of only volt-
age-controlled nonlinear resistors and capacitors, linear
devices of any flavor (lumped or distributed), and inde-
pendent current sources whose waveforms belong to
PM(Ty). Assume that the circuit has a unique periodic
steady-state solution ¥ € PN(T,) that is globally asymp-
totically stable (i.e., v(r) = 0(f) as t = oo regardless of
v(t,)) and that all device constitutive equations are differ-
entiable when written as a function of voltage. If the cir-
cuit has N nodes, then it can be described with

d
flv, 0 =i®) + q(v(®)

+ S yt — Py v(r) dr + i) =0 (8)

where ¢ € R is time; v is the vector of node voltage wave-
forms; i; € PYM(T) is the vector of source current wave-
forms; i, g : RY — R" are differentiable functions rep-
resenting, respectively, the sum of the currents entering
the nodes from the nonlinear conductors, and the sum of
the charge entering the nodes from the nonlinear capaci-
tors; y is the matrix-valued impulse response of the circuit
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Fig. 1. Circuit interpretation of harmonic programming.

with the nonlinear devices removed;” and fis the function
that maps the node voltage waveforms into the sum of the
currents entering each node.

To use harmonic balance on (8), it is necessary to trans-
form both f(v) and v into the frequency domain. To make
the problem numerically tractable, the number of har-
monics considered is truncated to some finite number. The
Nyquist sampling theorem indicates that this truncation is

analogous to the discretization of time when integrating -

differential equations in the time domain and theoretically
is not a limitation because, for all realizable circuits, there
exists a frequency beyond which there is negligible power.

Since y is linear, the Laplace transform may be used to
transform it into the frequency domain y < T. Further-
more, since v is periodic and the circuit is stable

S yt — nuv(r)dr < YV

where V € CHV contains the Fourier coefficients of the
voltage at each node and each harmonic (V = [Fv), and Y
€ CHV*HN is a block node admittance matrix for the linear
portion for the circuit

Y=1[Y,l, mnefl,2, -+, N}

Y”lﬂ = [Ymn(ka l)], k’ le {0; 1, Tt H - 1}
where m, n are the node indices; k, [ are the frequency
indices. Letj = v —1
if k =1

T, k)
Ytk 1) = { s BEE
0 itk 1

Since v, i(v), q(v) € PN(TO), (8) can be transformed into
the frequency domain

FV)y=IV) + W) + YW+ 1 =0 C)]

’To remove a nonlinear device, simply replace its constitutive equation
y =f(x)withy = 0.

where I, € C*" contains the Fourier coefficients of the
source current for each node and each harmonic, I, = Fi;
F, I, Q: C*N — CHN where §f(v) = F(V), Fi(v) =
).

Fqv) = Q(V); and Q € CHNV > BN
Q=[] mnefl,2, ---, N}
{dlag {0’ Wo, 2(00, Tt (H - l)wo}’ m=n

Q. = .
™ 0, m#n

C. Harmonic Programming

It is possible to apply nonlinear programming tech-
niques to solve (9). To do so, use e(V) = F*(V) F(V) as
the cost function where (V) € R and the asterisk repre-
sents the conjugate transpose. An optimizer is used to find
the value of V that globally minimizes e(V). If a V is found
such that 6(17) = 0, then V satisfies (9). Usually, some
quasi-Newton method is used, such as the variable metric
algorithm [10], [16], to achieve a superlinear rate of con-
vergence without having to compute the Hessian of e(V).

Using optimization to solve the harmonic balance equa-
tions suffers from the fact that there is a very large number
of variables. If a circuit with 20 nodes is simulated at
eight harmonics, then 320 variables need to be optimized.
If there are many nodes in the circuit that have only linear
devices attached, then it is possible to shrink the number
of variables to be optimized by considering the collection
of all linear devices as a single multiterminal subcircuit.
The nodes with no nonlinear devices attached become in-
ternal nodes to the subcircuit and so need not be consid-
ered as optimization variables. Fig. 1 shows a convenient
way of visualizing the analysis once the linear devices
have been placed in a subcircuit. Here, the substitution
theorem has been used to replace the nonlinear devices
with sources. The resulting circuit is linear; however, the



voltage spectra for the voltage sources that are used to
replace the nonlinear devices are unknown. These spectra
are generated by the optimization package. Nakhla and
Vlach [10] have taken this idea one step further by con-
sidering the collection of nonlinear devices as a subcircuit
as well. Neither of these two approaches help when
MMIC’s are simulated, however, because each node in a
monolithic circuit tends to have linear devices as well as
nonlinear resistors and capacitors tied to them.

Using the optimizer to solve the harmonic balance
equations is inefficient. To do so requires that a difficult
problem, that of solving F(V) = 0 for V, is converted into
an even harder problem, that of solving

dF*(V) F(V) _

av 0.

That information is lost in the conversion aggravates the
situation. All information about each of the individual
contributors to ¢ is lost when F*(V) F(V) is formed to
calculate (V). It is also difficult to exploit the structure
of the harmonic balance-node admittance equations, and
so for these reasons, the following two approaches are
preferred over harmonic programming.

D. Harmonic Relaxation

Relaxation methods are another approach that can be
used to solve the algebraic set of equations that result from
the application of harmonic balance. These methods are
attractive when the nonlinear behavior of the circuit is very
mild. Two different ways of applying relaxation methods
will be presented. The first uses a form of nonlinear re-
laxation called splitting that is similar to the approach
taken be Kerr [13], [17], [18]. The second combines re-
laxation and Newton’s method; it has much better con-
vergence properties than the first approach.

Splitting is a relaxation technique that was originally
developed to solve linear systems of equations and was
generalized to handle nonlinear systems [19]. As an intro-
duction, consider the linear system

Ax = b (10$)
and consider the splitting of A into the sum
A=B—-C

where B is nonsingular and the system Bx = d is easy to
solve. Then a fixed-point iteration that can be applied to
find the solution of (10) is

xU+D = BN + b)

where the superscript on x is the iteration count. This it-
eration will converge if all the eigenvalues of B~'C are
smaller in magnitude than one.

The splitting method can be used with harmonic bal-
ance by rewriting (9) as

YU+ = _pvy — aowy — 1. an

Y is assumed to be nonsingular, which implies that when
all nonlinear devices are removed, there can be no floating
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nodes. Since linear devices are incapable of translating
frequencies, the node admittance matrix for the linear
portion of the circuit (Y) is block diagonal (we are assum-
ing here that the harmonic number is the major index and
the node number is the minor index). Thus, once the right-
hand side of (11) has been evaluated, the task of finding
V&+D can be broken into solving H decoupled linear N
X N systems of equations, one for each harmonic.

To explore the convergence properties of the iteration
defined by (11), the following well-known theorem {19],
[20] from classical analysis is needed.

Theorem 1 (Contraction Mapping Theorem): Let C be
a closed subset of G". If f'is a map from C into C and if
there exists v < 1 such that

lfe — il < yllx =yl

for all x, y € C, then fis called a contraction map on C.
Furthermore, there exists a unique X (called a fixed point
of f) such that f(£) = £ and given any x'¥ € C, the se-
quence {x'} defined by xY*" = f(x"’) converges to .
|
If C = C#N, then the theorem gives sufficient condi-
tions for the global convergence of (11); however, it is
difficult to apply, so a theorem giving sufficient conditions
for local convergence will be presented. But first a lemma
is needed.
Lemma: Suppose f maps a convex open set F contained
in C" into C", fis differentiable in E, and there is a real
number M such that J; (x), the Jacobian of f at x, satisfies

I/l = M forevery xe€E.

Then | f(x) — f(W)| = Mlx — y|| forallx,ye E. W
The lemma is a straight-forward extension of a theorem
given by Rudin [21] for RV,
Theorem 2: Let E be an open subset of C". Suppose
f: E — GC"is continuously differentiable on £ and can be
written in the form

f) = Ax — g)

where A € C"*" is nonsingular. If there exists £ € E such
that f(£) = 0 and if [|[A7'J,(®)|| < 1, then there exists
some & > 0 such that for all x© in the closed ball Bs(£)
C E the sequence {x‘} defined by x/*' = A 'g(x")
converges to £.

Proof: Let ¢(x) = A 'g(x) and choose some v € [0,
1) such that ||A_1Jg(92)i < +. Since f, and hence g, is
continuously differentiable, there exists 6 > O such that
for all x € By(%). | A7 'J,(x)|| < . Note that the derivative
of ¢(x) is J4(x) = A_‘Jg(x). From the lemma

loe) — oIl = vllx — yll

for all x, y in the interior of B;(X), and since ¢ is contin-
uous, (12) must hold for all of B;(£), not just the interior.
By the contraction mapping theorem, ¢ has a unique fixed
point in B,(£), which must be £ because it is a fixed point
for ¢. Also, {x'} = %if x© € B;(®). |

If the conclusion of Theorem 2 is applied to (11), then,
to assure local convergence, we need

(12)
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Y"1,y + jQIMill < 1 (13)

where V is the solution of (11). There is no reason to be-
lieve this condition will be met in practice. As an example
of when it would not be met, consider a very simple cir-
cuit with only one node and analyzed at dc only. Then, Y
eRand,Q:R—->R. LetY=1,I(V) =2V, and Q(V)
= 0. Then, Y~'J, = 2, and so the convergence criterion
is not satisfied. Indeed, for this circuit, convergence will
not be achieved for any V© # V. This example shows
that relaxation using the splitting method given by (11)
has poor convergence properties. In particular, even if the
starting value of V@ is arbitrarily close to the final solu-
tion, and regardless of how mild the nonlinearities are be-
having, convergence is not assured. In fact, convergence
can easily be lost if the largest conductance exhibited by
any of the nonlinear devices is larger than the smallest
conductance to ground present in the circuit when the
nonlinear devices are removed.

The second relaxation approach to solving the algebraic
harmonic balance equation (9) is to use the block Gauss-
Jacobi method with a one-step Newton inner loop [19],
[22] known as the block Gauss-Jacobi-Newton method.
To apply this method, (9) needs to be reformulated into a
system of 2 H — 1 equations; each equation calculates the
vector of node currents at one frequency given the node
voltages at all frequencies. (Notice we are now consid-
ering both positive and negative frequencies; this was not
necessary for the splitting method.) Thus, (9) is rewritten
as

FV, k) = IV, k) + jkwoQV, k)
+ Yk, k) V(k) + I(k) =0
for k=1-H, ---,
-1,0,1, -, H—- 1. (14)

The block Gauss-Jacobi algorithm, when applied to (14),
has the following form:
Nonlinear Block Gauss-Jacobi Algorithm

repeat
{ j<ij+ 1
forall (k € {1 — H, , —1,0, 1, ---,
H—- 1}
solve F(V(j)(l _ H), cee V(j+1)(k), ce

VUXH — 1)) for VY (k)
}until (VU0 — VO < o).

The equation inside the forall loop is solved using
Newton’s method for VY * P(k). Note that in this equation
only V(k) is a variable, and V(I)! # k are constant and
taken from the previous iteration. Since Newton’s method
(with quadratic convergence) is being performed inside an
outer relaxation loop (with linear convergence), it is not
necessary to fully converge the Newton iteration. In fact,
it is only necessary to take one step of the ‘‘inner’” New-
ton iteration, and doing so does not affect the asymptotic
rate of convergence of the overall method [19], [22].
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Block Gauss-Jacobi-Newton is similar to the splitting
method, except that each equation in (14) is first linear-
ized with one step of Newton’s method rather than by just
removing the nonlinearities. Applying the Gauss-Jacobi-
Newton method to (14) results in

OF(V, k) ey ) W
= A - = —F(VY
Y20 v (ky — VY (k)] F(VY, k),
k=1-H, --+,-1,01, -+ ,H—1
or
VD) Loy
V)
_IFV 0 ey 0
= VW - Fvh )
where
OF(V, k) IV, k) . . 30V, k)
vk ok ke =pay” T Yk ).

To simplify the calculation of this derivative, it was nec-
essary to assume that the circuit is being analyzed at both
positive and negative frequencies. Only the derivation of
AV, k)/aV(k) will be presented; the derivation of dQ(V,
k)/oV(k) is identical:

To
IV, k) = %0 SO i) e 7% gy,

Now differentiate by employing the chain rule

AV, k1 ST" Di®) o

vk T, Jo VK

To ~.
_ 1 S di(u(D) du(d) R
Ty Jo dv(®) aV(k)

To compute the derivative of v(r), write it as a Fourier
series

dt

H-1
v = 2 Vi) e™ (16)
I=1-H
avu() _ ko
av(k) '
Back to the derivative of I(V, k)
AW, k) 1 [™ai
v,k _ 1 S i) -
aVk) Ty Jo dvu(@)

Thus, the derivative is simply the average value of the
derivative waveform over one period. We used the as-
sumption that both positive and negative frequencies were
present in (16). This is necessary to avoid assuming that
V(—1) = V*(), where the asterisk represents complex
conjugation. The conjugation operator is not analytic and
so it is not differentiable in the complex field. This prob-
lem is surmounted in Section II-E; however, (17) is a rea-
sonable approximation to the derivative even when only
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Fig. 2. Circuit interpretation of the splitting method form of harmonic re-
laxation.

nonnegative frequencies are used. So it is probably not
necessary to suffer the extra complexity of employing the
negative frequencies to get the exact derivative.

The block Gauss-Jacobi-Newton iteration is well de-
fined only if each of the equations in (14) has a unique
solution at each step. In addition, convergence can be as-
sured at least in the region local to the solution V if certain
conditions are met by the Jacobian J(V') at the solution.
In particular, if F is continuously differentiable on an open
set E C CHV containing V, and if Jo(V) = D(V) + R(V),
where D is a nonsingular block diagonal matrix with D(V,
k, k) = aF(V, k)/aV(k), then, from Theorem 2, there ex-
ists a closed ball B;(V) C E such that for all V© e By(V)
the block Gauss-Jacobi iteration is well defined and will
converge to V if ||[D (V) R(P)| < 1. Notice that D(V,
k, k) is the Jacobian of the circuit at the kth harmonic. In
other words, it is the node admittance matrix of the circuit
at the kth harmonic where the circuit has been linearized
about the solution. R represents coupling between signals
at different harmonics that results from nonlinearities in
the circuit. If the circuit is linear, then R = 0 and con-
vergence is assured. The more strongly nonlinear the cir-
cuit behaves, the more coupling exists between different
harmonics and the larger the terms in R become. Thus,
convergence becomes less likely. So block Gauss-Jacobi-
Newton is guaranteed to converge if F(V) is *‘sufficiently
linear’” and if V@ is sufficiently close to the solution V.

To illustrate how the two relaxation methods work,
consider the network shown in Fig. 2(a). In the splitting
method, on each iteration, the voltages on the nonlinear
devices are fixed at the values of the previous iteration,

which fixes the current passed by these devices. So, in .

(11), the nonlinear currents are moved to the right-hand
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Fig. 3. Circuit interpretatipn of the block Gauss-Jacobi-Newton form of
harmonic relaxation.

side with the constants, and, in Fig. 2, they are replaced
with current sources, 'a la substitution theorem. This “‘lin-
earizes’’ the circuit, so the node voltages can be found
with Gaussian elimiration. These new node voltages are
then applied to the nonlinear devices, and their new cur-
rent is calculated and applied to the linearized circuit, re-
quiring it to be reevaluated on the next iteration. The lin-
earized circuit never changes, so only forward and
backward substitution is needed for reevaluation.

With block Gauss-Jacobi-Newton, the circuit is linear-
ized by dividing the nonlinear devices into two parts. One
is the best linear approximation to the nonlinear device
considering the signal present on the device. The other is
the nonlinear residual that when combined with the linear
part gives the original nonlinear device. This division is
illustrated in Fig. 3.

By viewing Figs. 2 and 3, it becomes clear why Gauss-
Jacobi-Newton has better convergence properties than the
splitting method: it has a better model of the nonlinear
device in the linear subcircuit, so less correction is needed
on each iteration. Indeed, if the nonlinear devices behave
linearly, then clearly Gauss-Jacobi-Newton converges in
one step while the splitting will require many, and may
not even converge.

The Gauss-Jacobi-Newton method has the nice feature
that it uses very little memory. The circuit is analyzed at
only one frequency at a time, so space is needed for only
one sparse N X N node admittance matrix; that space is
reused for each frequency. This contrasts with the har-
monic Newton method that will be presented next: it ana-
lyzes the circuit at all frequencies simultaneously, and so
it needs a great deal more memory. The Gauss-Jacobi-
Newton method is also quite fast if the circuit is behaving
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linearly. However, it does have severe convergence prob-
lems when circuits behave very nonlinearly. Harmonic
Newton, which can be seen as a logical extension of
Gauss-Jacobi-Newton, is much more robust, but also can
require much more time on near linear circuits. For this
reason, techniques will be presented later that modify har-
monic Newton on near linear problems to become much
more like Gauss-Jacobi-Newton, resulting in a composite
method that can be both fast and robust.

E. Harmonic Newton
Newton’s method applied to (9) results in the following
iteration:

pUh =y gDyt Ry (18)

which is both locally (as is easily seen by applying Theo-
rem 2) and superlinearly convergent. To evaluate this
expression, it is necessary to compute F(V) and Jz(V)

FV) = 1I(V) + jQQW) + YV + [

FV) = Fi(F V) + jQFqF V) + YV + I,. (19)

Thus, to evaluate the nonlinear terms in F, the node volt-
age spectra are transformed into the time domain, applied
to the nonlinear devices, and the resulting current wave-
forms are converted into the frequency domain. The cal-
culation of J(V) is more involved, partially because f(v)
and v are constrained to be real functions and we desire
not to use negative frequencies. Applying these two con-
straints results in the derivative Jz(V) being unrepresent-
able in the complex field. To circumvent this problem,
each complex number is written as an equivalent vector
in 2. To perform this conversion, some more notation
will be defined. Let X € C. Then define X%, X' e R, X e
7?2 such that X* = Re {X}, X' = Im {X}, and X =
X R X", Similar notation is used for vectors, functions,
and matrices, Using this notation, (9) is solved with the
iteration

PEED = PO T 7R FpW) (20)

where F(V), V e R* and Jz € R*H * 2N 5 the harmonic
Jacobian, i.e.,

- — OF(V) olV) =30(V) <
Je(V) = —=— = —(—= = .
N == v T8 Y
The harmonic Jacobian is organized as the block matrix
- OF,(V
J(V):[T{T/(——)} mne{l,2, -+ N} (21

where F,(V), V, € R*#. This block matrix is referred to
as the block node admittance matrix because its structure
is identical to the node admittance matrix. The blocks are
referred to as conversion matrices; they have the form
oF, (V) [al‘:,,,(f/, k)}
av, v, |
k,1e {0,1, --- , H— 1}

where F,,(V, k) € R?, and

22)
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AFR(WV, k) OFXW, k)

G Tkl = OF, (V. k) _ Vi) V)
N V(D) OFL(V, ky aFL(V, k)
Vi) vy

This derivative consists of the sum of terms

OF,(V, k) _ dL(V, k) N [0 —kwo}
k(.OO 0

oV, () av.()

00,V k) | <

—317"( 0 + Yk, 1) (23)
- [Yoalk, D) =Yk, l)}
Yol 1) = [yf,,,xk, A )

Only the calculation of IRV, k1aVRW) will be per-
formed; the calculation of the other terms in oLV, k)/
av,(l) and 3Q,,(V, k)/aV,() is similar

1" .
LV, k) = T SO i(U(D) e 7 gt
0

To
IRV, k) = Ti S i (v(D)) cos (kawygt) dt.
0

0

The function v is considered implicitly to be a function
of its frequency-domain equivalent V; so the chain rule
can be employed to calculate the derivative

MRV, b _ 1 ST" Bin(v(®) IV,
VED  To do du) VIO

Now the derivative of v, () is calculated

cos (kwot) dt.  (25)

vt = X V() e’

vRO) + 2 El VE(k) cos (kwyt)

v1) =
— Vi) sin (ko).
Forl # 0
du,(1)
() Vi) B [ 2 cos (lwot)jl
VD) | Bu,r) —2 sin (lwf) |’
VD)
For!l =0

(1) [1}

v,  Lo)

These derivatives are now substituted into (25). So if
[+0

R 7/ To 4.
IV o _ 2 S 3in(v(®) cos (lwgt) cos (kwet) dt

avikay T, Jo v,
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1 S“ Bin(V(1))
T Ty o du)
* [cos ((k + Dwyt) + cos (k — Dwet)] dt.
andifl =0
AW, k) 1 ST" Bi(V(2)
—an ) = -7—,(; . —avn ) cos (kwgt) dt

Now let G,,(k) € C be the kth harmonic of di,(v())/
av, (1), i.e., let

1 (P80, e
G,k = T So —__av,, o e dr. (26)
Then, for! +# 0
3LV, k)
FIZ0N
and forl =0
oLV, k) _ [Gﬁ,,(k) 0}
av,0  LGLk © @8)

This completes the calculation of the harmonic Jacobian.
It may now be synthesized from (21)-(28). For a one node
circuit at three frequencies, the complete harmonic Jaco-
bian would be

[Gf,,,(k -D+GRk+D GLk+1) -Gk — 1)}
Gtk — 1) + Ghyk + 1) G2k — 1) — GR .k + D

531

nonzero and always setting the dc imaginary term to zero
in the right-hand vector.

By avoiding negative frequencies, the Jacobian has been
converted from a complex 2H — 1)N x (2H — 1)N ma-
trix to a real 2 AN X 2 HN matrix. This conversion halves
the memory required for the harmonic Jacobian and the
number of operations required for its decomposition.

III. HARMONICA

We are currently developing a simulator based on the
harmonic Newton algorithm. Unlike previous efforts [10]-
[13], [15], [17], [18] that were aimed at circuits contain-
ing only one or two nonlinear devices. Harmonica is de-
signed to quickly analyze large circuits with many nonlin-

@7

ear devices. This advance is made possible by using
harmonic Newton, by exploiting the structure and char-
acteristics of the harmonic Jacobian, and by exploiting the
linear and almost-linear behavior of the devices.

The harmonic Jacobian is organized as a block node
admittance matrix. Each block is a conversion matrix that
is itself a block matrix, consisting of 2 X 2 blocks that

_ _ ; . ) !
7 =22+ 020 .y rother thom G, Convoion. mateices oo Tl 1 they arc
where _
GR(©) 0 2GR(-1) 2Gi(~1) 2GR (-2) 26h(- |
0 00 0 0 0
3IV) _|Gh() 0 GHO) + Gl  GL2) GH(=1 + GHi3) —-GiLi(-D + G,(3)
v l6ho 0 GLe 6RO - Gh@ GL(-D + GL®  Gli-D - G|
Gh@ o i + Ghi®) —GL() + GL,(®) GfO) + GT@) Gii(4)
[Gu@ 0 GL(M) + GLB)  Gh() - GI®) Gu® SHORRGION
d0(V)/dV is similar with G replaced by C
[Y®© o o 0 0 o | 000 0o o o]
0 0 0 0 0 0 00 O 0 0 0
7o o o Yo -rviia o 0 5 00 0 —w O 0
o o Yo Y@ o 0 0 0 w 0 0
0 0 0 0 Y@ -YLQ) 00 0 —2wp
0 0 0 0o Y, YR 00 0 2w, O

Note that the second row and column of these conversion
matrices consists completely of zeros, an artifact that re-
sults because phasors at dc must be real. This structural
singularity in Jp can be removed either by deleting the
offending row and column or making the diagonal entry

associated with a node that has a nonlinear device at-
tached, otherwise they are diagonal. In a MMIC, nonlin-
ear devices attach to most nodes, so the conversion ma-
trices will in general be full. Since there are typically
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about four nonzero elements per row and column of a node
admittance matrix, and there are H rows and columns in
a conversion matrix, there are typically 4 H nonzero 2 X
2 blocks in each row and column of a harmonic Jacobian.
Clearly, the harmonic Jacobian can be very large and
much denser than typical circuit matrices. Applying tra-
ditional sparse matrix techniques [23] is not enough to
solve the Newton update equation (18) efficiently. It is
also necessary to reduce the density of the matrix. The
Jacobian is used only to generate new iterates; it is not
used when confirming convergence, so errors in the Ja-
cobian affect only the rate and region of convergence, not
the accuracy of the final solution. Approximations in the
Jacobian reduce the asymptotic rate of convergence, but
the gain in efficiency can more than make up for this loss.

Perhaps the easiest approximation that can be made is
to simply reuse the Jacobian from a previous iteration.
Clearly, if the circuit is behaving near-linearly, the Ja-
cobian will not vary much from iteration to iteration. This
idea, which is attributed to Samanskii [19], can greatly
reduce the time required for an iteration because it com-
pletely eliminates the construction and LU decomposition
of the Jacobian; therefore, only the forward and backward
substitution steps are needed. Some care is needed when
using Samanskii’s method because if the Jacobian is vary-
ing appreciably on each step, then a bad step could be
generated. On each Samanskii step, the value of || F(V)]
should be monitored, and the step only taken if || F(V)| is
sufficiently reduced.

The second approach to approximating the Jacobian,
and thus speeding the iteration, results from exploiting the
natural characteristics of conversion matrices for the non-
linear devices. These matrices can be split into the sum
of a Toeplitz and a Hankel matrix.? For example

31,(V)
—=— =R +
av, S
where
g r-y r— r_3— So §1 5 53
R = r rp r_y ro g = S1 8 83 8y
rn n ro ry Sy S3 84 S5
3 r, n 7o | S3 S84 S5 S
[Gf;,,,(lo —Gr(k)] {Gﬁn(k) G!,m(k)}
r, = s, =
e GRwl T Lo —GRm

where G, is the sum of the derivative spectra for nonlin-
ear resistors between node m and n, or from m to ground
if m = n. This spectrum has the characteristic that the
more linear the devices that generate it are behaving, the
more the dc component dominates over the harmonics and
the faster their magnitude drops off at higher harmonics.
As a result, elements in the conversion matrix far from

*A Teoplitz matrix has the form given by a; = r,_; and similarly, the

form of a Hankel matrix is given by ¢; = s, ;.
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Fig. 4. Fill-in pattern of a banded block matrix.

the diagonal will be small compared to those on the di-
agonal. To reduce the density of the harmonic Jacobian,
these small terms far from the diagonal will be ignored.

Definition: The guard harmonic for a derivative spec-
trum is the smallest harmonic & such that

|G| < ulG©)| forall I =k

where y is a threshold parameter. Typically u = 1074,

When constructing the conversion matrices (i.e., the
blocks in the harmonic Jacobian resulting from nonlinear
devices), all harmonics in the derivative spectrum used to
form the conversion matrix are considered negligible if
they are above the guard harmonic. These harmonics are
set to zero, making the conversion matrices banded about
the diagonal with the bandwidth an increasing function of
how nonlinear the devices contributing to the matrix are
behaving. Note that if the bandwidth is restricted to one,
so all entries off the main diagonal of a conversion matrix
are set to zero, then harmonic Newton collapses to block
Gauss-Jacobi-Newton harmonic relaxation.

Ignoring those harmonics of the derivative spectra that
fall above the guard harmonics greatly increases the initial
sparsity of the harmonic Jacobian; however, the Jacobian
tends to fill-in during its decomposition into L and U. To
see this, consider the 3 X 3 banded block matrix in Fig.
4. The original nonzeros are marked with crosses (X) and
the fill-ins are marked with circles (O). Notice the ten-
dency of the bandwidth to increase in the blocks remain-
ing after a major row and column have been eliminated.
Also notice that, of the original nonzeros, those farthest
from the diagonal of a block are due to the guard har-
monics. These elements are small compared to the diag-
onal. The fill-ins inside the blocks always involve the
guard harmonic, and so these fill-ins are assumed to be
negligible. This heuristic does not have a sound theoret-
ical basis, but is usually true if the blocks are strongly
Toeplitz and both the blocks and the block matrix are
strongly diagonally dominant. Thus, the nonlinearities
should be resistive and behaving only mildly nonlinear,
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TABLE 1
COMPARISON OF TIMES FOR Two CIRCUITS

Harmonica

Circuit | Conditionst | SPICE2 Harmonics
8 | 16 i 32
TWA 62.500¢ | 7| 22| 56
* 6 16 40
uAT41

9 6 13 29

13 10 28 63

14 *x | 365 | 575

"Times are given in seconds and were measured on a VAX 11/785 run-
ning UNIX 4.3BSD. Harmonica is written in the C programming language.

*These times were not measured, simply because little new information
would be provided and the times are very expensive to measure.

**Circuit was behaving too nonlinearly for Harmonica to be able to
converge with so few harmonics.

*This number is an extrapolation made from measurements of times re-
quired for smaller simulation intervals. The desired time interval (two pe-
riods) caused memory usage to exceed the available 16M bytes.

and each node in the circuit should be connected to ground
with an admittance that is large compared to the admit-
tances connecting it to other nodes. These conditions are
very restrictive and rarely satisfied in practice; however,
the heuristic works quite well regardless and results in at
least a factor of two to four speed up. The heuristic can
fail though, in which case the threshold u should be made
very small and the Jacobian redecomposed. To reduce the
likelihood that the heuristic will fail when nonlinear ca-
pacitors are present, the conversion matrices should be
arranged so the highest harmonics and, hence, the largest
admittances are placed in the upper left portion of the ma-
trix and the smallest in the lower right.

A. Results

Execution times for the Harmonica are a strong func-
tion of the number of harmonics simulated, the strength
of the nonlinear behavior, and the number of devices be-
having nonlinearly. Before applying the techniques given
in the previous section, each iteration requires O(N*H 3)
operations, where 1.1 < o« < 1.5. After applying those
techniques, and measuring the execution times of a few
circuits, each iteration seems to require O(N“H*) opera-
tions where 1 < 8 < 2. The iteration count remains rel-
atively constant as the number of harmonics changes.

The times for two circuits simulated both with Har-
monica and SPICE [24] are presented in Table I. The first
circuit is well-suited to simulation in the frequency do-
main and poorly suited to time-domain simulation. With
the other, the roles are reversed. The first is a traveling
wave amplifier (TWA) [25] that contains four bipolar
transistors and ten transmission lines of noncommensur-
ate length (Fig. 5). Note that the transmission lines are
constrained to be ideal by SPICE; Harmonica easily han-
dles lossy and dispersive lines. This circuit demonstrates
the ease with which Harmonica handles circuits with dis-
tributed components.

The second circuit, a simple noninverting amplifier
containing a uA 741 (Fig. 6), is troublesome to Harmon-
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Fig. 5. The traveling-wave amplifier (TWA) schematic.

Veg=+15 v

G

~Vgg=~-15V

Fig. 6. Schematic of nA 741 operational amplifier. It is used in a nonin-
verting amplifier configuration with a gain of 100.

ica because the op-amp is internally acting strongly non-
linear: the large load causing the output stage to operate
class B. This example demonstrates that Harmonica is
able to handle strongly nonlinear circuits, though it may
run longer than traditional simulators. It also shows that
Harmonica is able to handle relatively large circuits.

B. Error Control

Operation in the frequency domain traditionally de-
mands much tighter error control than is normally prac-
ticed in the time domain. The frequency-domain repre-
sentation of a signal allows the resolution of small signals
in the presence of large signals, with dynamic range re-
quirements sometimes reaching 120 dB. Harmonica is set
up to routinely achieve accuracies commensurate with
these requirements.® There are three factors that are ex-
ploited to achieve these accuracies. First, Harmonica per-
forms a true steady-state analysis with time points equally
spaced over one period, so the DFT is well defined and
accurate. Second, circuits typically behave near-linearly
and input signals are smooth so the Fourier coefficients
drop off rapidly in size at the upper harmonics. And last,
the algebraic system of equations is being solved with
Newton’s method, which has superlinear convergence, so
the system can be solved to an arbitrarily tight error tol-
erance within a reasonable number of iterations.

Fig. 7 shows the output spectrum of TWA when sim-
ulated using eight and 16 harmonics and the default con-

*Naturally, any discrepancies between the behavior of the models and
the behavior of the physical devices they are modeling is desregarded.
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Fig. 7. Output spectra of TWA calculated by Harmonica using (a) eight
and (b) 16 harmonics, and (c) the difference.

vergence termination criterion of 1 ppm. The difference
between the outputs at eight and 16 harmonics is given in
Fig. 7(c). The total error in the eight harmonic spectrum
that results from not considering harmonics greater than
eight amounts to about 20 ppm relative to the fundamen-
tal. The amount of error in any of the eight harmonics
calculated is less than 1 ppm and is concentrated at the
upper harmonics. Aliasing is responsible for most of this
error, which explains why it is concentrated at the higher
harmonics. The signal at the ninth harmonic is much larger
than that at the 15th. The ninth aliases onto the seventh
and the 15th aliases onto the first. Thus, more error is
expected in the seventh harmonic than in the first.

IV. CONCLUSIONS

The harmonic balance methods, and, in particular, har-
monic Newton, provide an attractive alternative to con-
ventional time-domain simulation techniques when the
periodic steady-state response of a circuit is desired. Cir-
cuits that are quite difficult to simulate in the time do-
main, such as high-Q circuits or circuits containing dis-
tributed components, are easily and efficiently simulated
in the frequency domain. Harmonic Newton simulates
circuits very accurately, providing the ability to see very
small distortion products and giving the user much greater
confidence in the results.

There is currently no simulator that is well matched to
the task of simulating nonlinear microwave circuits, the
principal reason being that all nonlinear simulators have
been based in the time domain and it is difficult to simu-
late distributed components in the time domain. Harmon-
ica is an effort to provide such a simulator to the micro-
wave circuit design community. It is the first simulator
suitable for use on large nonlinear microwave circuits.

In future work, we will try to apply harmonic Newton
to both autonomous circuits and circuits that have almost-
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periodic solutions. We also plan to further increase the
efficiency of harmonic Newton and improve its conver-
gence properties. Lastly, we will explore applications of
the harmonic Jacobian to noise analysis, sensitivity anal-
ysis, and optimization.
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